Search results for: Continuous ant colony optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2629

Search results for: Continuous ant colony optimization

589 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

Authors: Yu T. Tsai, Jin H. Huang

Abstract:

In this paper, the specific sound Transmission Loss (TL) of the Laminated Composite Plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

Keywords: Sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
588 Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations

Authors: Marco Actis Grande, Somlak Wannarumon

Abstract:

This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction.

Keywords: Computer fluid dynamic, Investment casting, Jewelry, Mould filling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
587 Globally Convergent Edge-preserving Reconstruction with Contour-line Smoothing

Authors: Marc C. Robini, Pierre-Jean Viverge, Yuemin Zhu, Jianhua Luo

Abstract:

The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem, including the case when the data fidelity term is non-quadratic and the cost function is nonconvex. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than those obtained without wavelet-domain constraints.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
586 Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec

Authors: Davide Pierattoni, Ivan Macor, Pier Luca Montessoro

Abstract:

In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.

Keywords: Integrated voice-data communication, computernetwork performance, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
585 Application of Build-up and Wash-off Models for an East-Australian Catchment

Authors: Iqbal Hossain, Monzur Alam Imteaz, Mohammed Iqbal Hossain

Abstract:

Estimation of stormwater pollutants is a pre-requisite for the protection and improvement of the aquatic environment and for appropriate management options. The usual practice for the stormwater quality prediction is performed through water quality modeling. However, the accuracy of the prediction by the models depends on the proper estimation of model parameters. This paper presents the estimation of model parameters for a catchment water quality model developed for the continuous simulation of stormwater pollutants from a catchment to the catchment outlet. The model is capable of simulating the accumulation and transportation of the stormwater pollutants; suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) from a particular catchment. Rainfall and water quality data were collected for the Hotham Creek Catchment (HTCC), Gold Coast, Australia. Runoff calculations from the developed model were compared with the calculated discharges from the widely used hydrological models, WBNM and DRAINS. Based on the measured water quality data, model water quality parameters were calibrated for the above-mentioned catchment. The calibrated parameters are expected to be helpful for the best management practices (BMPs) of the region. Sensitivity analyses of the estimated parameters were performed to assess the impacts of the model parameters on overall model estimations of runoff water quality.

Keywords: Calibration, Model Parameters, Suspended Solids, TotalNitrogen, Total Phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
584 Standard and Processing of Photodegradable Polyethylene

Authors: Nurul-Akidah M. Yusak, Rahmah Mohamed, Noor Zuhaira Abd Aziz

Abstract:

The introduction of degradable plastic materials into agricultural sectors has represented a promising alternative to promote green agriculture and environmental friendly of modern farming practices. Major challenges of developing degradable agricultural films are to identify the most feasible types of degradation mechanisms, composition of degradable polymers and related processing techniques. The incorrect choice of degradable mechanisms to be applied during the degradation process will cause premature losses of mechanical performance and strength. In order to achieve controlled process of agricultural film degradation, the compositions of degradable agricultural film also important in order to stimulate degradation reaction at required interval of time and to achieve sustainability of the modern agricultural practices. A set of photodegradable polyethylene based agricultural film was developed and produced, following the selective optimization of processing parameters of the agricultural film manufacturing system. Example of agricultural films application for oil palm seedlings cultivation is presented.

Keywords: Photodegradable polyethylene, plasticulture, processing schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3048
583 Parallel Priority Region Approach to Detect Background

Authors: Sallama Athab, Hala Bahjat, Zhang Yinghui

Abstract:

Background detection is essential in video analyses; optimization is often needed in order to achieve real time calculation. Information gathered by dual cameras placed in the front and rear part of an Autonomous Vehicle (AV) is integrated for background detection. In this paper, real time calculation is achieved on the proposed technique by using Priority Regions (PR) and Parallel Processing together where each frame is divided into regions then and each region process is processed in parallel. PR division depends upon driver view limitations. A background detection system is built on the Temporal Difference (TD) and Gaussian Filtering (GF). Temporal Difference and Gaussian Filtering with multi threshold and sigma (weight) value are be based on PR characteristics. The experiment result is prepared on real scene. Comparison of the speed and accuracy with traditional background detection techniques, the effectiveness of PR and parallel processing are also discussed in this paper.

Keywords: Autonomous Vehicle, Background Detection, Dual Camera, Gaussian Filtering, Parallel Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
582 A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects

Authors: Setareh Shekarsaraei, Marjan Moridi, Nasser L. Hadipour

Abstract:

In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results has shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed.

Keywords: Hydrogen bonding, Density Functional Theory (DFT), Natural bond Orbitals (NBO), cooperativity effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
581 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
580 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine

Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar

Abstract:

In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.

Keywords: Customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
579 Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System

Authors: Ghazi Al Sukkar, Yazid Khattabi, Shifen Zhong

Abstract:

Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters.

Keywords: OFDM, Mach Zehnder Bias Voltage, switching voltage, radio-over-fiber, RF gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
578 Aiming at Optimization of Tracking Technology through Seasonally Tilted Sun Trackers: An Indian Perspective

Authors: Sanjoy Mukherjee

Abstract:

Discussions on concepts of Single Axis Tracker (SAT) are becoming more and more apt for developing countries like India not just as an advancement in racking technology but due to the utmost necessity of reaching at the lowest Levelized Cost of Energy (LCOE) targets. With this increasing competition and significant fall in feed-in tariffs of solar PV projects, developers are under constant pressure to secure investment for their projects and eventually earn profits from them. Moreover, being the second largest populated country, India suffers from scarcity of land because of higher average population density. So, to mitigate the risk of this dual edged sword with reducing trend of unit (kWh) cost at one side and utilization of land on the other, tracking evolved as the call of the hour. Therefore, the prime objectives of this paper are not only to showcase how STT proves to be an effective mechanism to get more gain in Global Incidence in collector plane (Ginc) with respect to traditional mounting systems but also to introduce Seasonally Tilted Tracker (STT) technology as a possible option for high latitude locations.

Keywords: Tracking system, grid-connected PV systems, cost reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
577 An Exhaustive Review of Die Sinking Electrical Discharge Machining Process and Scope for Future Research

Authors: M. M. Pawade, S. S. Banwait

Abstract:

Electrical Discharge Machine (EDM) is especially used for the manufacturing of 3-D complex geometry and hard material parts that are extremely difficult-to-machine by conventional machining processes. In this paper authors review the research work carried out in the development of die-sinking EDM within the past decades for the improvement of machining characteristics such as Material Removal Rate, Surface Roughness and Tool Wear Ratio. In this review various techniques reported by EDM researchers for improving the machining characteristics have been categorized as process parameters optimization, multi spark technique, powder mixed EDM, servo control system and pulse discriminating. At the end, flexible machine controller is suggested for Die Sinking EDM to enhance the machining characteristics and to achieve high-level automation. Thus, die sinking EDM can be integrated with Computer Integrated Manufacturing environment as a need of agile manufacturing systems.

Keywords: Electrical Discharge Machine, Flexible Machine Controller, Material Removal Rate, Tool Wear Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5295
576 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Supported copper-manganese-lanthanum catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
575 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement

Authors: Rhadinia Tayag-Relanes, Felina C. Young

Abstract:

This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the Plan, Do, Check, Act (PDCA) approach and record review in the gathering of data for the calendar year 2019, specifically from August to October, focusing on the noodle products miki, canton, and misua. A causal-comparative research design was employed to establish cause-effect relationships among the variables, using descriptive statistics and correlation to compute the data gathered. The findings indicate that miki, canton, and misua production have distinct cycle times and production outputs in every set of its production processes, as well as varying levels of wastage. The company has not yet established a formal allowable rejection rate for wastage; instead, this paper used a 1% wastage limit. We recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators should be conducted by assessing their performance statistically based on the output and the machine performance; a root cause analysis must be conducted to identify solutions to production issues; and, an improved recording system for input and output of the production process of each noodle product should be established to eliminate the poor recording of data.

Keywords: Production, continuous improvement, process, operations, Plan, Do, Check, Act approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25
574 A Quality Optimization Approach: An Application on Next Generation Networks

Authors: Gülfem I. Alptekin, S. Emre Alptekin

Abstract:

The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.

Keywords: cognitive radio networks, game theory, nextgeneration wireless networks, spectrum management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
573 Determining Optimal Production Plan by Revised Surrogate Worth Trade-off Method

Authors: Tunjo Peric, Zoran Babic

Abstract:

The authors of this work indicate by means of a concrete example that it is possible to apply efficaciously the method of multiple criteria programming in dealing with the problem of determining the optimal production plan for a certain period of time. The work presents: (1) the selection of optimization criteria, (2) the setting of the problem of determining an optimal production plan, (3) the setting of the model of multiple criteria programming in finding a solution to a given problem, (4) the revised surrogate trade-off method, (5) generalized multicriteria model for solving production planning problem and problem of choosing technological variants in the metal manufacturing industry. In the final part of this work the authors reflect on the application of the method of multiple criteria programming while determining the optimal production plan in manufacturing enterprises.

Keywords: multi-criteria programming, production planning, technological variant, Surrogate Worth Trade-off Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
572 Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique

Authors: F.C. Amadi, G. C. Enyi, G. G. Nasr

Abstract:

Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production.

Keywords: Hydraulic fracturing, Mfrac, Optimisation, Tight reservoir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
571 Quantum Computing: A New Era of Computing

Authors: Jyoti Chaturvedi Gursaran

Abstract:

Nature conducts its action in a very private manner. To reveal these actions classical science has done a great effort. But classical science can experiment only with the things that can be seen with eyes. Beyond the scope of classical science quantum science works very well. It is based on some postulates like qubit, superposition of two states, entanglement, measurement and evolution of states that are briefly described in the present paper. One of the applications of quantum computing i.e. implementation of a novel quantum evolutionary algorithm(QEA) to automate the time tabling problem of Dayalbagh Educational Institute (Deemed University) is also presented in this paper. Making a good timetable is a scheduling problem. It is NP-hard, multi-constrained, complex and a combinatorial optimization problem. The solution of this problem cannot be obtained in polynomial time. The QEA uses genetic operators on the Q-bit as well as updating operator of quantum gate which is introduced as a variation operator to converge toward better solutions.

Keywords: Quantum computing, qubit, superposition, entanglement, measurement of states, evolution of states, Scheduling problem, hard and soft constraints, evolutionary algorithm, quantum evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2662
570 Mechanical Structure Design Optimization by Blind Number Theory: Time-dependent Reliability

Authors: Zakari Yaou, Lirong Cui

Abstract:

In a product development process, understanding the functional behavior of the system, the role of components in achieving functions and failure modes if components/subsystem fails its required function will help develop appropriate design validation and verification program for reliability assessment. The integration of these three issues will help design and reliability engineers in identifying weak spots in design and planning future actions and testing program. This case study demonstrate the advantage of unascertained theory described in the subjective cognition uncertainty, and then applies blind number (BN) theory in describing the uncertainty of the mechanical system failure process and the same time used the same theory in bringing out another mechanical reliability system model. The practical calculations shows the BN Model embodied the characters of simply, small account of calculation but betterforecasting capability, which had the value of macroscopic discussion to some extent.

Keywords: Mechanical structure Design, time-dependent stochastic process, unascertained information, blind number theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
569 Optimization of Growth Conditions for Acidic Protease Production from Rhizopus oligosporus through Solid State Fermentation of Sunflower Meal

Authors: Abdul Rauf, Muhammad Irfan, Muhammad Nadeem, Ishtiaq Ahmed, Hafiz Muhammad Nasir Iqbal

Abstract:

Rhizopus oligosporus was used in the present study for the production of protease enzyme under SSF. Sunflower meal was used as by-product of oil industry incorporated with organic salts was employed for the production of protease enzyme. The main purpose of the present was to study different parameters of protease productivity, its yields and to optimize basal fermentation conditions. The optimal conditions found for protease production using sunflower meal as a substrate in the present study were inoculum size (1%), substrate (Sunflower meal), substrate concentration (20 g), pH (3), cultivation period (72 h), incubation temperature (35oC), substrate to diluent-s ratio (1:2) and tween 81 (1 mL). The maximum production of protease in the presence of cheaper substrate at low concentration and stability at acidic pH, these characteristics make the strain and its enzymes useful in different industry.

Keywords: Acidic protease, Rhizopus oligosporus, Mediaoptimization, Solid state Fermentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002
568 Inferential Reasoning for Heterogeneous Multi-Agent Mission

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.

Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
567 A New Controlling Parameter in Design of Above Knee Prosthesis

Authors: M. Tahani, G. Karimi

Abstract:

In this paper after reviewing some previous studies, in order to optimize the above knee prosthesis, beside the inertial properties a new controlling parameter is informed. This controlling parameter makes the prosthesis able to act as a multi behavior system when the amputee is opposing to different environments. This active prosthesis with the new controlling parameter can simplify the control of prosthesis and reduce the rate of energy consumption in comparison to recently presented similar prosthesis “Agonistantagonist active knee prosthesis". In this paper three models are generated, a passive, an active, and an optimized active prosthesis. Second order Taylor series is the numerical method in solution of the models equations and the optimization procedure is genetic algorithm. Modeling the prosthesis which comprises this new controlling parameter (SEP) during the swing phase represents acceptable results in comparison to natural behavior of shank. Reported results in this paper represent 3.3 degrees as the maximum deviation of models shank angle from the natural pattern. The natural gait pattern belongs to walking at the speed of 81 m/min.

Keywords: Above knee prosthesis, active controlling parameter, ballistic motion, swing phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
566 Enhancement Throughput of Unplanned Wireless Mesh Networks Deployment Using Partitioning Hierarchical Cluster (PHC)

Authors: Ahmed K. Hasan, A. A. Zaidan, Anas Majeed, B. B. Zaidan, Rosli Salleh, Omar Zakaria, Ali Zuheir

Abstract:

Wireless mesh networks based on IEEE 802.11 technology are a scalable and efficient solution for next generation wireless networking to provide wide-area wideband internet access to a significant number of users. The deployment of these wireless mesh networks may be within different authorities and without any planning, they are potentially overlapped partially or completely in the same service area. The aim of the proposed model is design a new model to Enhancement Throughput of Unplanned Wireless Mesh Networks Deployment Using Partitioning Hierarchical Cluster (PHC), the unplanned deployment of WMNs are determinates there performance. We use throughput optimization approach to model the unplanned WMNs deployment problem based on partitioning hierarchical cluster (PHC) based architecture, in this paper the researcher used bridge node by allowing interworking traffic between these WMNs as solution for performance degradation.

Keywords: Wireless Mesh Networks, 802.11s Internetworking, partitioning Hierarchical Cluste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
565 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
564 Simulation of the Reactive Rotational Molding Using Smoothed Particle Hydrodynamics

Authors: A. Hamidi, S. Khelladi, L. Illoul, A. Tcharkhtchi

Abstract:

Reactive rotational molding (RRM) is a process to manufacture hollow plastic parts with reactive material has several advantages compared to conventional roto molding of thermoplastic powders: process cycle time is shorter; raw material is less expensive because polymerization occurs during processing and high-performance polymers may be used such as thermosets, thermoplastics or blends. However, several phenomena occur during this process which makes the optimization of the process quite complex. In this study, we have used a mixture of isocyanate and polyol as a reactive system. The chemical transformation of this system to polyurethane has been studied by thermal analysis and rheology tests. Thanks to these results of the curing process and rheological measurements, the kinetic and rheokinetik of polyurethane was identified. Smoothed Particle Hydrodynamics, a Lagrangian meshless method, was chosen to simulate reactive fluid flow in 2 and 3D configurations of the polyurethane during the process taking into account the chemical, and chemiorehological results obtained experimentally in this study.

Keywords: Reactive rotational molding, free surface flows, simulation, smoothed particle hydrodynamics, surface tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
563 Flowering Response of a Red Pitaya Germplasm Collection to Lighting Addition

Authors: Dinh-Ha Tran, Chung-Ruey Yen, Yu-Kuang H. Chen

Abstract:

A collection of thirty cultivars/clones of a red pitaya was used to investigate flowering response to lighting supplementation in the winter season of 2013-2014 in southern Taiwan. The night-breaking treatment was conducted during the period of 10 Oct. 2013 to 5 Mar. 2014 with 4-continuous hours (22.00 – 02.00 hrs) of additional lighting daily using incandescent bulbs (100W). Among cultivars and clones tested, twenty-three genotypes, most belonging to the red-magenta flesh type, were found to have positively flowering response to the lighting treatment. The duration of night-breaking treatment for successful flowering initiation varied from 33- 48 days. The lighting-sensitive genotypes bore 1-2 flowering flushes. Floral and fruiting stages took 21-26 and 46-59 days, respectively. Among sixteen fruiting genotypes, the highest fruit set rates were found in Damao 9, D4, D13, Chaozou large, Chaozhou 5, Small Nick and F22. Five cultivars and clones (Orejona, D4, Chaozhou large, Chaozhou 5 and Small Nick) produced fruits with an average weight of more than 300 g per fruit which were higher than those of the fruits formed in the summer of 2013. Fruits produced during off-season containing total soluble solids (TSS) from 17.5 to 20.7oBrix, which were higher than those produced inseason.

Keywords: Flowering response, long-day plant, night-breaking treatment, off-season production, pitaya.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3963
562 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic speech recognition system, children speech, adaptation, Malay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
561 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383
560 Real Time Compensation of Machining Errors for Machine Tools NC based on Systematic Dispersion

Authors: M. Rahou, A. Cheikh, F. Sebaa

Abstract:

Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing, but also the manufacturing constraints, for example geometrical defects of the machine, vibration and the wear of the cutting tool. In this paper, an experimental study on the influence of the wear of the cutting tool (systematic dispersions) is explored. This study was carried out on three stages .The first stage allows machining without elimination of dispersions (random, systematic) so the tolerances of manufacture according to total dispersions. In the second stage, the results of the first stage are filtered in such way to obtain the tolerances according to random dispersions. Finally, from the two previous stages, the systematic dispersions are generated. The objective of this study is to model by the least squares method the error of manufacture based on systematic dispersion. Finally, an approach of optimization of the manufacturing tolerances was developed for machining on a CNC machine tool

Keywords: Dispersions, Compensation, modeling, manufacturing Tolerance, machine tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336