Search results for: Finite point method
8037 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading
Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla
Abstract:
Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.
Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12698036 Preliminary Study on Fixture Layout Optimization Using Element Strain Energy
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The objective of positioning the fixture elements in the fixture is to make the workpiece stiff, so that geometric errors in the manufacturing process can be reduced. Most of the work for optimal fixture layout used the minimization of the sum of the nodal deflection normal to the surface as objective function. All deflections in other direction have been neglected. We propose a new method for fixture layout optimization in this paper, which uses the element strain energy. The deformations in all the directions have been considered in this way. The objective function in this method is to minimize the sum of square of element strain energy. Strain energy and stiffness are inversely proportional to each other. The optimization problem is solved by the sequential quadratic programming method. Three different kinds of case studies are presented, and results are compared with the method using nodal deflections as objective function to verify the propose method.Keywords: Fixture layout, optimization, strain energy, quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15618035 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind
Authors: jianhua Hou, Changqing Yang, and Beibo Qin
Abstract:
A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.
Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14108034 Applying Element Free Galerkin Method on Beam and Plate
Authors: Mahdad M’hamed, Belaidi Idir
Abstract:
This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate holeKeywords: Numerical computation, element-free Galerkin, moving least squares, meshless methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24488033 Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate
Authors: Partha P. Gopmandal, S. Bhattacharyya
Abstract:
We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.
Keywords: Electrophoresis, Advective flow, Polarization effect, Numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18228032 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells
Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi
Abstract:
Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material.
In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved.
In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.
Keywords: Thermal effect, Conduction, Heat dissipation, Thermal conductivity, Solar cell, PV module, Nodes, 3D-TLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23528031 Modern Method for Solving Pure Integer Programming Models
Authors: G. Shojatalab
Abstract:
In this paper, all variables are supposed to be integer and positive. In this modern method, objective function is assumed to be maximized or minimized but constraints are always explained like less or equal to. In this method, choosing a dual combination of ideal nonequivalent and omitting one of variables. With continuing this act, finally, having one nonequivalent with (n-m+1) unknown quantities in which final nonequivalent, m is counter for constraints, n is counter for variables of decision.Keywords: Integer, Programming, Operation Research, Variables of decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12518030 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation
Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi
Abstract:
Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.
Keywords: Integral production, level set method, morphological operation, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42408029 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence
Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei
Abstract:
With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.
Keywords: Reasoning, Bayesian networks, cyber-attack attribution, kill chain, threat intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26858028 Approximation of Sturm-Liouville Problems by Exponentially Weighted Legendre-Gauss Tau Method
Authors: Mohamed K. El Daou
Abstract:
We construct an exponentially weighted Legendre- Gauss Tau method for solving differential equations with oscillatory solutions. The proposed method is applied to Sturm-Liouville problems. Numerical examples illustrating the efficiency and the high accuracy of our results are presented.
Keywords: Oscillatory functions, Sturm-Liouville problems, legendre polynomial, gauss points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14128027 Noise Estimation for Speech Enhancement in Non-Stationary Environments-A New Method
Authors: Ch.V.Rama Rao, Gowthami., Harsha., Rajkumar., M.B.Rama Murthy, K.Srinivasa Rao, K.AnithaSheela
Abstract:
This paper presents a new method for estimating the nonstationary noise power spectral density given a noisy signal. The method is based on averaging the noisy speech power spectrum using time and frequency dependent smoothing factors. These factors are adjusted based on signal-presence probability in individual frequency bins. Signal presence is determined by computing the ratio of the noisy speech power spectrum to its local minimum, which is updated continuously by averaging past values of the noisy speech power spectra with a look-ahead factor. This method adapts very quickly to highly non-stationary noise environments. The proposed method achieves significant improvements over a system that uses voice activity detector (VAD) in noise estimation.Keywords: Noise estimation, Non-stationary noise, Speechenhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23498026 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads
Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh
Abstract:
Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc’ = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.
Keywords: Eccentric loads, ductility index, RC column, slenderness, UHPFRC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9848025 Price Quoting Method for Contract Manufacturer
Authors: S. Homrossukon, W. Parinyasart
Abstract:
This is an applied research to propose the method for price quotation for a contract electronics manufacturer. It has had a precise price quoting method but such method could not quickly provide a result as the customer required. This reduces the ability of company to compete in this kind of business. In this case, the cause of long time quotation process was analyzed. A lot of product features have been demanded by customer. By checking routine processes, it was found that high fraction of quoting time was used for production time estimating which has effected to the manufacturing or production cost. Then the historical data of products including types, number of components, assembling method, and their assembling time were used to analyze the key components affecting to production time. The price quoting model then was proposed. The implementation of proposed model was able to remarkably reduce quoting time with an acceptable required precision.Keywords: Price quoting, Contract manufacturer, Stepwise technique, Best subset technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44368024 Gabriel-constrained Parametric Surface Triangulation
Authors: Oscar E. Ruiz, Carlos Cadavid, Juan G. Lalinde, Ricardo Serrano, Guillermo Peris-Fajarnes
Abstract:
The Boundary Representation of a 3D manifold contains FACES (connected subsets of a parametric surface S : R2 -! R3). In many science and engineering applications it is cumbersome and algebraically difficult to deal with the polynomial set and constraints (LOOPs) representing the FACE. Because of this reason, a Piecewise Linear (PL) approximation of the FACE is needed, which is usually represented in terms of triangles (i.e. 2-simplices). Solving the problem of FACE triangulation requires producing quality triangles which are: (i) independent of the arguments of S, (ii) sensitive to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv) topologically compatible with the triangles of the neighboring FACEs. In the existing literature there are no guarantees for the point (iii). This article contributes to the topic of triangulations conforming to the boundaries of the FACE by applying the concept of parameterindependent Gabriel complex, which improves the correctness of the triangulation regarding aspects (iii) and (iv). In addition, the article applies the geometric concept of tangent ball to a surface at a point to address points (i) and (ii). Additional research is needed in algorithms that (i) take advantage of the concepts presented in the heuristic algorithm proposed and (ii) can be proved correct.Keywords: surface triangulation, conforming triangulation, surfacesampling, Gabriel complex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16718023 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither
Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara
Abstract:
The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.Keywords: Spacecraft control, quantized control, nonlinear control, random dither method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7168022 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C
Authors: Minghui Wang, Luping Xu, Juntao Zhang
Abstract:
Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14238021 Performance of the Strong Stability Method in the Univariate Classical Risk Model
Authors: Safia Hocine, Zina Benouaret, Djamil A¨ıssani
Abstract:
In this paper, we study the performance of the strong stability method of the univariate classical risk model. We interest to the stability bounds established using two approaches. The first based on the strong stability method developed for a general Markov chains. The second approach based on the regenerative processes theory . By adopting an algorithmic procedure, we study the performance of the stability method in the case of exponential distribution claim amounts. After presenting numerically and graphically the stability bounds, an interpretation and comparison of the results have been done.Keywords: Markov Chain, regenerative processes, risk models, ruin probability, strong stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11548020 An Analytical Method for Solving General Riccati Equation
Authors: Y. Pala, M. O. Ertas
Abstract:
In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.
Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20498019 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method
Authors: Nisha Goyal, R.K. Gupta
Abstract:
This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.
Keywords: Sawada-Kotera-Kadomtsev-Petviashivili equation, Bogoyavlensky-Konoplechenko equation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16308018 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model
Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim
Abstract:
Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature Th and the right vertical wall is maintained at a constant cold temperature Tc, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL’s finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number (Ra = 10^5, and Ra = 10^6 ), Darcy namber (Da = 10^−2, and Da = 10^−3), the modified thermal conductivity ratio (10^−1 ≤ γ ≤ 10^4), the inter-phase heat transfer coefficien (10^−1 ≤ H ≤ 10^3) and the time dependent (0.001 ≤ τ ≤ 0.2). The results presented for values of the governing parameters in terms of streamlines in both fluid/porous-layer, isotherms of fluid in fluid/porous-layer, isotherms of solid in porous layer, and average Nusselt number.
Keywords: Unsteady natural convection, Thermal non-equilibrium model, Darcy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27618017 Analysis of Hard Turning Process of AISI D3-Thermal Aspects
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of hard turning by using commercial software DEFORM 3D has been compared to experimental results of stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13578016 On the Differential Geometry of the Curves in Minkowski Space-Time II
Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut
Abstract:
In the first part of this paper [6], a method to determine Frenet apparatus of the space-like curves in Minkowski space-time is presented. In this work, the mentioned method is developed for the time-like curves in Minkowski space-time. Additionally, an example of presented method is illustrated.Keywords: Frenet Apparatus, Time-like Curves, MinkowskiSpace-time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16728015 Periodic Solutions for Some Strongly Nonlinear Oscillators by He's Energy Balance Method
Abstract:
In this paper, applying He-s energy balance method to determine frequency formulation relations of nonlinear oscillators with discontinuous term or fractional potential. By calculation and computer simulations, compared with the exact solutions show that the results obtained are of high accuracy.
Keywords: He's energy balance method, periodic solution, nonlinear oscillator, discontinuous, fractional potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13818014 Synchronization Between Two Chaotic Systems: Numerical and Circuit Simulation
Authors: J. H. Park, T. H. Lee, S. M. Lee, H. Y. Jung
Abstract:
In this paper, a generalized synchronization scheme, which is called function synchronization, for chaotic systems is studied. Based on Lyapunov method and active control method, we design the synchronization controller for the system such that the error dynamics between master and slave chaotic systems is asymptotically stable. For verification of our theory, computer and circuit simulations for a specific chaotic system is conducted.
Keywords: Chaotic systems, synchronization, Lyapunov method, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16948013 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation
Authors: Constantin Z. Leshan
Abstract:
Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.
Keywords: Border of the universe, causality violation, perfect isolation, quantum jumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12428012 Sunflower Irrigation with Two Different Types of Soil Moisture Sensors
Authors: C. D. Papanikolaou, V. A. Giouvanis, E. A. Karatasiou, D. S. Dimakas, M. A. Sakellariou-Makrantonaki
Abstract:
Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM).
Keywords: Irrigation scheduling, soil moisture sensors, sustainable agriculture, water saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9878011 Diameter of Zero Divisor Graphs of Finite Direct Product of Lattices
Authors: H. Y. Pourali, V. V. Joshi, B. N. Waphare.
Abstract:
In this paper, we verify the diameter of zero divisor graphs with respect to direct product.
Keywords: Atomic lattice, complement of graph, diameter, direct product of lattices, 0-distributive lattice, girth, product of graphs, prime ideal, zero divisor graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20808010 Element-Independent Implementation for Method of Lagrange Multipliers
Authors: Gil-Eon Jeong, Sung-Kie Youn, K. C. Park
Abstract:
Treatment for the non-matching interface is an important computational issue. To handle this problem, the method of Lagrange multipliers including classical and localized versions are the most popular technique. It essentially imposes the interface compatibility conditions by introducing Lagrange multipliers. However, the numerical system becomes unstable and inefficient due to the Lagrange multipliers. The interface element-independent formulation that does not include the Lagrange multipliers can be obtained by modifying the independent variables mathematically. Through this modification, more efficient and stable system can be achieved while involving equivalent accuracy comparing with the conventional method. A numerical example is conducted to verify the validity of the presented method.Keywords: Element-independent formulation, non-matching interface, interface coupling, methods of Lagrange multipliers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11898009 Free Vibration Analysis of Non-Uniform Euler Beams on Elastic Foundation via Homotopy Perturbation Method
Authors: U. Mutman, S. B. Coskun
Abstract:
In this study Homotopy Perturbation Method (HPM) is employed to investigate free vibration of an Euler beam with variable stiffness resting on an elastic foundation. HPM is an easy-to-use and very efficient technique for the solution of linear or nonlinear problems. HPM produces analytical approximate expression which is continuous in the solution domain. This work shows that HPM is a promising method for free vibration analysis of nonuniform Euler beams on elastic foundation. Several case problems have been solved by using the technique and solutions have been compared with those available in the literature.Keywords: Homotopy Perturbation Method, Elastic Foundation, Vibration, Beam
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22308008 Sinc-Galerkin Method for the Solution of Problems in Calculus of Variations
Authors: M. Zarebnia, N. Aliniya
Abstract:
In this paper, a numerical solution based on sinc functions is used for finding the solution of boundary value problems which arise from the problems of calculus of variations. This approximation reduce the problems to an explicit system of algebraic equations. Some numerical examples are also given to illustrate the accuracy and applicability of the presented method.Keywords: Calculus of variation; Sinc functions; Galerkin; Numerical method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975