Search results for: task performance.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6453

Search results for: task performance.

4533 Frame Texture Classification Method (FTCM) Applied on Mammograms for Detection of Abnormalities

Authors: Kjersti Engan, Karl Skretting, Jostein Herredsvela, Thor Ole Gulsrud

Abstract:

Texture classification is an important image processing task with a broad application range. Many different techniques for texture classification have been explored. Using sparse approximation as a feature extraction method for texture classification is a relatively new approach, and Skretting et al. recently presented the Frame Texture Classification Method (FTCM), showing very good results on classical texture images. As an extension of that work the FTCM is here tested on a real world application as detection of abnormalities in mammograms. Some extensions to the original FTCM that are useful in some applications are implemented; two different smoothing techniques and a vector augmentation technique. Both detection of microcalcifications (as a primary detection technique and as a last stage of a detection scheme), and soft tissue lesions in mammograms are explored. All the results are interesting, and especially the results using FTCM on regions of interest as the last stage in a detection scheme for microcalcifications are promising.

Keywords: detection, mammogram, texture classification, dictionary learning, FTCM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
4532 Preparation and Characterization of MoO3/Al2O3 Catalyst for Oxidative Desulfurization of Diesel using H2O2: Effect of Drying Method and Mo Loading

Authors: Azam Akbari, Mohammadreza Omidkhah, Jafar Toufighi Darian

Abstract:

The mesoporous MoO3/γ-Al2O3 catalyst was prepared by incipient wetness impregnation method aiming to investigate the effect of drying method and molybdenum content on the catalyst property and performance towards the oxidation of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyle dibenzothiophene (4,6-DMDBT) with H2O2 for deep oxidative desulfurization of diesel fuel. The catalyst was characterized by XRD, BET, BJH and SEM method. The catalyst with 10wt.% and 15wt.% Mo content represent same optimum performance for DBT and 4,6-DMDBT removal, but a catalyst with 10wt.% Mo has higher efficiency than 15wt.% Mo for BT conversion. The SEM images show that use of rotary evaporator in drying step reaches a more homogenous impregnation. The oxidation reactivity of different sulfur compounds was studied which followed the order of DBT>4,6-DMDBT>>BT.

Keywords: desulfurization, oxidation, MoO3/Al2O3 catalyst

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3016
4531 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings

Authors: A. Fayad, Q. Alqhazaly, T. Cinkler

Abstract:

In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.

Keywords: Bit Error Rate, BER, Carrier Suppressed Return to Zero, CSRZ, Duo Binary, DB, Differential Quadrature Phase Shift Keying, DQPSK, Modified Duo Binary, MODB, On-Off Keying Non-Return-to-Zero, NRZ-OOK, Quality factor, Qf, Time and Wavelength Division Multiplexing Passive Optical Network, TWDM-PON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
4530 Performance of Chaotic Lu System in CDMA Satellites Communications Systems

Authors: K. Kemih, M. Benslama

Abstract:

This paper investigates the problem of spreading sequence and receiver code synchronization techniques for satellite based CDMA communications systems. The performance of CDMA system depends on the autocorrelation and cross-correlation properties of the used spreading sequences. In this paper we propose the uses of chaotic Lu system to generate binary sequences for spreading codes in a direct sequence spread CDMA system. To minimize multiple access interference (MAI) we propose the use of genetic algorithm for optimum selection of chaotic spreading sequences. To solve the problem of transmitter-receiver synchronization, we use the passivity controls. The concept of semipassivity is defined to find simple conditions which ensure boundedness of the solutions of coupled Lu systems. Numerical results are presented to show the effectiveness of the proposed approach.

Keywords: About Chaotic Lu system, synchronization, Spreading sequence, Genetic Algorithm. Passive System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
4529 Automatic Rearrangement of Localized Graphical User Interface

Authors: Ágoston Winkler, Sándor Juhász

Abstract:

The localization of software products is essential for reaching the users of the international market. An important task for this is the translation of the user interface into local national languages. As graphical interfaces are usually optimized for the size of the texts in the original language, after the translation certain user controls (e.g. text labels and buttons in dialogs) may grow in such a manner that they slip above each other. This not only causes an unpleasant appearance but also makes the use of the program more difficult (or even impossible) which implies that the arrangement of the controls must be corrected subsequently. The correction should preserve the original structure of the interface (e.g. the relation of logically coherent controls), furthermore, it is important to keep the nicely proportioned design: the formation of large empty areas should be avoided. This paper describes an algorithm that automatically rearranges the controls of a graphical user interface based on the principles above. The algorithm has been implemented and integrated into a translation support system and reached results pleasant for the human eye in most test cases.

Keywords: Graphical user interface, GUI, natural languages, software localization, translation support systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
4528 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System

Authors: A. Jalal, S. Kim

Abstract:

Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.

Keywords: Ubiquitous architecture, verification, Identification, recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
4527 A Tree Based Association Rule Approach for XML Data with Semantic Integration

Authors: D. Sasikala, K. Premalatha

Abstract:

The use of eXtensible Markup Language (XML) in web, business and scientific databases lead to the development of methods, techniques and systems to manage and analyze XML data. Semi-structured documents suffer due to its heterogeneity and dimensionality. XML structure and content mining represent convergence for research in semi-structured data and text mining. As the information available on the internet grows drastically, extracting knowledge from XML documents becomes a harder task. Certainly, documents are often so large that the data set returned as answer to a query may also be very big to convey the required information. To improve the query answering, a Semantic Tree Based Association Rule (STAR) mining method is proposed. This method provides intentional information by considering the structure, content and the semantics of the content. The method is applied on Reuter’s dataset and the results show that the proposed method outperforms well.

Keywords: Semi--structured Document, Tree based Association Rule (TAR), Semantic Association Rule Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
4526 BIP-Based Alarm Declaration and Clearing in SONET Networks Employing Automatic Protection Switching

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper examines the performance of bit-interleaved parity (BIP) methods in error rate monitoring, and in declaration and clearing of alarms in those transport networks that employ automatic protection switching (APS). The BIP-based error rate monitoring is attractive for its simplicity and ease of implementation. The BIP-based results are compared with exact results and are found to declare the alarms too late, and to clear the alarms too early. It is concluded that the standards development and systems implementation should take into account the fact of early clearing and late declaration of alarms. The window parameters defining the detection and clearing thresholds should be set so as to build sufficient hysteresis into the system to ensure that BIP-based implementations yield acceptable performance results.

Keywords: Automatic protection switching, bit interleaved parity, excessive bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
4525 Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach

Authors: M. R. Vaezi, R. Ghasemi, A. Akramizadeh

Abstract:

Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. Based on this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC).After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.

Keywords: Frequency Control, Islanded Micro-grid, Load shedding, Multi-agent System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943
4524 Grouping-Based Job Scheduling Model In Grid Computing

Authors: Vishnu Kant Soni, Raksha Sharma, Manoj Kumar Mishra

Abstract:

Grid computing is a high performance computing environment to solve larger scale computational applications. Grid computing contains resource management, job scheduling, security problems, information management and so on. Job scheduling is a fundamental and important issue in achieving high performance in grid computing systems. However, it is a big challenge to design an efficient scheduler and its implementation. In Grid Computing, there is a need of further improvement in Job Scheduling algorithm to schedule the light-weight or small jobs into a coarse-grained or group of jobs, which will reduce the communication time, processing time and enhance resource utilization. This Grouping strategy considers the processing power, memory-size and bandwidth requirements of each job to realize the real grid system. The experimental results demonstrate that the proposed scheduling algorithm efficiently reduces the processing time of jobs in comparison to others.

Keywords: Grid computing, Job grouping and Jobscheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
4523 Maintenance Management System for Upstream Operations in Oil and Gas Industry: Case Study

Authors: Wan Hasrulnizzam Wan Mahmood, Mohd Nizam Ab Rahman, Husiah Mazli, Baba Md Deros

Abstract:

This paper explores the plant maintenance management system that has been used by giant oil and gas company in Malaysia. The system also called as PMMS used to manage the upstream operations for more than 100 plants of the case study company. Moreover, from the observations, focus group discussion with PMMS personnel and application through simulation (SAP R/3), the paper reviews the step-by-step approach and the elements that required for the PMMS. The findings show that the PMMS integrates the overall business strategy in upstream operations that consist of asset management, work management and performance management. In addition, PMMS roles are to help operations personnel organize and plan their daily activities, to improve productivity and reduce equipment downtime and to help operations management analyze the facilities and create performance, and to provide and maintain the operational effectiveness of the facilities.

Keywords: Maintenance, Oil and Gas Industry, Upstream Operations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12547
4522 Word Stemming Algorithms and Retrieval Effectiveness in Malay and Arabic Documents Retrieval Systems

Authors: Tengku Mohd T. Sembok

Abstract:

Documents retrieval in Information Retrieval Systems (IRS) is generally about understanding of information in the documents concern. The more the system able to understand the contents of documents the more effective will be the retrieval outcomes. But understanding of the contents is a very complex task. Conventional IRS apply algorithms that can only approximate the meaning of document contents through keywords approach using vector space model. Keywords may be unstemmed or stemmed. When keywords are stemmed and conflated in retrieving process, we are a step forwards in applying semantic technology in IRS. Word stemming is a process in morphological analysis under natural language processing, before syntactic and semantic analysis. We have developed algorithms for Malay and Arabic and incorporated stemming in our experimental systems in order to measure retrieval effectiveness. The results have shown that the retrieval effectiveness has increased when stemming is used in the systems.

Keywords: Information Retrieval, Natural Language Processing, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
4521 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
4520 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: Flammability, paraffin, plasterboard, thermal energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
4519 Effect of Tomato Pomace and Fibrolytic Enzyme on Egg Production and Egg Quality

Authors: K. Vasupen, S. Wongsuthavas, S. Bureenok, B. Saenmahayak, K. Ampaporn, C. Yuangklang

Abstract:

This study was designed to determine effect of supplemented tomato pomace and fobrolytic enzyme on egg production and egg quality. A total of 40 CP brown laying hens (95 week old) were used in completely randomized design in 2x2 factorial arrangement with or without enzyme supplementation. Four dietary treatments included: Control (C), Fibrolytic enzyme (FE), 10% Tomato pomace (TP), and Fibrolytic enzyme + 10 % Tomato pomace (FE+TP). Each of the four dietary treatments was fed up to 30 days (10 birds/treatment). Live performance, egg production, egg weight and quality were determined for whole period. Dietary treatments had no effect (P>0.05) on live performance, egg weight, yolk color, and egg production. Therefore, laying hens fed diets with fibrolytic enzyme were significantly (P<0.05) increased yolk weight (17.37 g) as compared to other treatments. Additional of dietary tomato pomace had reduced capital costs for egg production.

Keywords: Hen, Tomato Pomace, Fibrolytic Enzyme, Egg Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
4518 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: Anti-spoofing, CNN, fingerprint recognition, GAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
4517 An Intelligent System Framework for Generating Activity List of a Project Using WBS Mind map and Semantic Network

Authors: H. Iranmanesh, M. Madadi

Abstract:

Work Breakdown Structure (WBS) is one of the most vital planning processes of the project management since it is considered to be the fundamental of other processes like scheduling, controlling, assigning responsibilities, etc. In fact WBS or activity list is the heart of a project and omission of a simple task can lead to an irrecoverable result. There are some tools in order to generate a project WBS. One of the most powerful tools is mind mapping which is the basis of this article. Mind map is a method for thinking together and helps a project manager to stimulate the mind of project team members to generate project WBS. Here we try to generate a WBS of a sample project involving with the building construction using the aid of mind map and the artificial intelligence (AI) programming language. Since mind map structure can not represent data in a computerized way, we convert it to a semantic network which can be used by the computer and then extract the final WBS from the semantic network by the prolog programming language. This method will result a comprehensive WBS and decrease the probability of omitting project tasks.

Keywords: Expert System, Mind map, Semantic network, Work breakdown structure,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
4516 Performance of Random Diagonal Codes for Spectral Amplitude Coding Optical CDMA Systems

Authors: Hilal A. Fadhil, Syed A. Aljunid, R. Badlishah Ahmed

Abstract:

In this paper we study the use of a new code called Random Diagonal (RD) code for Spectral Amplitude Coding (SAC) optical Code Division Multiple Access (CDMA) networks, using Fiber Bragg-Grating (FBG), FBG consists of a fiber segment whose index of reflection varies periodically along its length. RD code is constructed using code level and data level, one of the important properties of this code is that the cross correlation at data level is always zero, which means that Phase intensity Induced Phase (PIIN) is reduced. We find that the performance of the RD code will be better than Modified Frequency Hopping (MFH) and Hadamard code It has been observed through experimental and theoretical simulation that BER for RD code perform significantly better than other codes. Proof –of-principle simulations of encoding with 3 channels, and 10 Gbps data transmission have been successfully demonstrated together with FBG decoding scheme for canceling the code level from SAC-signal.

Keywords: FBG, MFH, OCDMA, PIIN, BER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
4515 A Study on the Performance Characteristics of Variable Valve for Reverse Continuous Damper

Authors: Se Kyung Oh, Young Hwan Yoon, Ary Bachtiar Krishna

Abstract:

Nowadays, a passenger car suspension must has high performance criteria with light weight, low cost, and low energy consumption. Pilot controlled proportional valve is designed and analyzed to get small pressure change rate after blow-off, and to get a fast response of the damper, a reverse damping mechanism is adapted. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from the tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping forces can be tuned independently, of which the variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20 N, linearity, and variance of damping force. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through a real car test.

Keywords: Blow-off, damping force, pilot controlledproportional valve, reverse continuous damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
4514 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
4513 Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Authors: Ashutosh Kumar Rai, Naveen Kumar, Bhupendra Singh Chauhan

Abstract:

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

Keywords: Bio-fuel, exhaust emission, linseed oil, triglyceride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858
4512 An Accurate, Wide Dynamic Range Current Mirror Structure

Authors: Hassan Faraji Baghtash

Abstract:

In this paper, a low voltage high performance current mirror is presented. Its most important specifications, which are improved in this work, are analyzed and formulated proving that it has such outstanding merits as: Very low input resistance of 26mΩ, very wide current dynamic range of 8 decades from 10pA to 1mA (160dB) together with an extremely low current copy error of less than 0.6ppm, and very low input and output voltages. Furthermore, the proposed current mirror bandwidth is 944MHz utilizing very low power consumption (267μW) and transistors count. HSPICE simulation results are performed using TSMC 0.18μm CMOS technology utilizing 1.8V single power supply, confirming the theoretically proved outstanding performance of the proposed current mirror. Monte Carlo simulation of its most important parameter is also examined showing its sufficiently resistance against technology process variations.

Keywords: Current mirror/source, high accuracy, low voltage, wide dynamic range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
4511 Context Modeling and Context-Aware Service Adaptation for Pervasive Computing Systems

Authors: Moeiz Miraoui, Chakib Tadj, Chokri ben Amar

Abstract:

Devices in a pervasive computing system (PCS) are characterized by their context-awareness. It permits them to provide proactively adapted services to the user and applications. To do so, context must be well understood and modeled in an appropriate form which enhance its sharing between devices and provide a high level of abstraction. The most interesting methods for modeling context are those based on ontology however the majority of the proposed methods fail in proposing a generic ontology for context which limit their usability and keep them specific to a particular domain. The adaptation task must be done automatically and without an explicit intervention of the user. Devices of a PCS must acquire some intelligence which permits them to sense the current context and trigger the appropriate service or provide a service in a better suitable form. In this paper we will propose a generic service ontology for context modeling and a context-aware service adaptation based on a service oriented definition of context.

Keywords: Pervasive computing system, context, contextawareness, service, context modeling, ontology, adaptation, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
4510 Development of Neural Network Prediction Model of Energy Consumption

Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail

Abstract:

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
4509 Experimental Modal Analysis and Model Validation of Antenna Structures

Authors: B.R. Potgieter, G. Venter

Abstract:

Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.

Keywords: Finite Element Model (FEM), Karoo Array Telescope(KAT-7), modal frequencies, mode shapes, optimization, shape optimization, size optimization, vibration tests

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
4508 GPU Implementation for Solving in Compressible Two-Phase Flows

Authors: Sheng-Hsiu Kuo, Pao-Hsiung Chiu, Reui-Kuo Lin, Yan-Ting Lin

Abstract:

A one-step conservative level set method, combined with a global mass correction method, is developed in this study to simulate the incompressible two-phase flows. The present framework do not need to solve the conservative level set scheme at two separated steps, and the global mass can be exactly conserved. The present method is then more efficient than two-step conservative level set scheme. The dispersion-relation-preserving schemes are utilized for the advection terms. The pressure Poisson equation solver is applied to GPU computation using the pCDR library developed by National Center for High-Performance Computing, Taiwan. The SMP parallelization is used to accelerate the rest of calculations. Three benchmark problems were done for the performance evaluation. Good agreements with the referenced solutions are demonstrated for all the investigated problems.

Keywords: Conservative level set method, two-phase flow, dispersion-relation-preserving, graphics processing unit (GPU), multi-threading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
4507 Discrimination of Seismic Signals Using Artificial Neural Networks

Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim

Abstract:

The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
4506 Optimal Power Allocation to Diversity Branches of Cooperative MISO Sensor Networks

Authors: Rooholah Hasanizadeh, Saadan Zokaei

Abstract:

In the context of sensor networks, where every few dB saving counts, the novel node cooperation schemes are reviewed where MIMO techniques play a leading role. These methods could be treated as joint approach for designing physical layer of their communication scenarios. Then we analyzed the BER performance of transmission diversity schemes under a general fading channel model and proposed a power allocation strategy to the transmitting sensor nodes. This approach is then compared to an equal-power assignment method and its performance enhancement is verified by the simulation. Another key point of the contribution lies in the combination of optimal power allocation and sensor nodes- cooperation in a transmission diversity regime (MISO). Numerical results are given through figures to demonstrate the optimality and efficiency of proposed combined approach.

Keywords: Optimal power allocation, cooperative MISO scheme, sensor networks, diversity branch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
4505 Treatment of Eutrophic-lake Water by Free Water Surface Wetland

Authors: Haodong Wu, Ping Huang, Junsan Wang

Abstract:

In China, with the rapid urbanization and industrialization, and highly accelerated economic development have resulted in degradation of water resource. The water quality deterioration usual result from eutrophication in most cases, so how to dispose this type pollution water higher efficiently is an urgent task. Hower, different with traditional technology, constructed wetlands are effective treatment systems that can be very useful because they are simple technology and low operational cost. A pilot-scale treatment including constructed wetlands was constructed at XingYun Lake, Yuxi, China, and operated as primary treatment measure before eutrophic-lake water draining to riverine landscape. Water quality indices were determined during the experiment, the results indicated that treatment removal efficiencies were high for Nitrate nitrogen, Chlorophyll–a and Algae, the final removal efficiency reached to 95.20%, 93.33% and 99.87% respectively, but the removal efficiency of Total phosphorous and Total nitrogen only reach to 68.83% and 50.00% respectively.

Keywords: Constructed wetland, Eutrophic-lake water, Nutrientremoval, Removal efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
4504 Accelerating Integer Neural Networks On Low Cost DSPs

Authors: Thomas Behan, Zaiyi Liao, Lian Zhao, Chunting Yang

Abstract:

In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.

Keywords: Digital Signal Processor (DSP), Integer Neural Network(INN), Low Cost Neural Network, Integer Neural Network DSPImplementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804