Search results for: Parameter Estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2018

Search results for: Parameter Estimation

98 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.

Keywords: Deflection profiles, foamed concrete, load-strain relationships, precast foamed concrete sandwich panel, slenderness ratio, vertical in-plane shear strength capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
97 Elastic-Plastic Contact Analysis of Single Layer Solid Rough Surface Model using FEM

Authors: A. Megalingam, M.M.Mayuram

Abstract:

Evaluation of contact pressure, surface and subsurface contact stresses are essential to know the functional response of surface coatings and the contact behavior mainly depends on surface roughness, material property, thickness of layer and the manner of loading. Contact parameter evaluation of real rough surface contacts mostly relies on statistical single asperity contact approaches. In this work, a three dimensional layered solid rough surface in contact with a rigid flat is modeled and analyzed using finite element method. The rough surface of layered solid is generated by FFT approach. The generated rough surface is exported to a finite element method based ANSYS package through which the bottom up solid modeling is employed to create a deformable solid model with a layered solid rough surface on top. The discretization and contact analysis are carried by using the same ANSYS package. The elastic, elastoplastic and plastic deformations are continuous in the present finite element method unlike many other contact models. The Young-s modulus to yield strength ratio of layer is varied in the present work to observe the contact parameters effect while keeping the surface roughness and substrate material properties as constant. The contacting asperities attain elastic, elastoplastic and plastic states with their continuity and asperity interaction phenomena is inherently included. The resultant contact parameters show that neighboring asperity interaction and the Young-s modulus to yield strength ratio of layer influence the bulk deformation consequently affect the interface strength.

Keywords: Asperity interaction, finite element method, rough surface contact, single layered solid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
96 Wind-Induced Phenomenon in a Closed Water Area with Floating-Leaved Plant

Authors: Akinori Ozaki

Abstract:

In this study, in order to clarify wind-induced phenomena, especially vertical mixing of density stratification in a closed water area with floating-leaved plants, we conducted hydraulic experiments on wind flow characteristics, wind wave characteristics, entrainment phenomena and turbulent structure by using a wind tunnel test tank and simulated floating-leaved plants. From the experimental results of wind flow and wind wave characteristics, we quantified the impact of the occupancy rate of the plants on their resistance characteristics. From the experimental results of entrainment phenomena, we defined the parameter that could explain the magnitude of mixing between the density stratifications, and quantified the impact of the occupancy rate on vertical mixing between stratifications. From the experimental results of the turbulent structure of the upper layer, we clarified the differences in small-scale turbulence components at each occupancy rate and quantified the impact of the occupancy rate on the turbulence characteristics. For a summary of this study, we theoretically quantified wind-induced entrainment phenomena in a closed water area with luxuriant growth of floating-leaved plants. The results indicated that the impact of luxuriant growth of floating-leaved plants in a closed water body could be seen in the difference in small-scale fluid characteristics, and these characteristics could be expressed using the small-scale turbulent components.

Keywords: Density Stratification, Floating-leaved Plant, Wind-induced Entrainment Phenomenon, Turbulent Structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
95 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: Contact angle, contact angle hysteresis, contact time, superhydrophobic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
94 Trend Analysis of Annual Total Precipitation Data in Konya

Authors: Naci Büyükkaracığan

Abstract:

Hydroclimatic observation values ​​are used in the planning of the project of water resources. Climate variables are the first of the values ​​used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.

Keywords: Trend analysis, precipitation, hydroclimatology, Konya, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
93 Study on Seismic Performance of Reinforced Soil Walls to Modify the Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, geometric parameters of the wall and type of the site showed that the used method in this study leads to efficient designs in comparison with other methods, which are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: Pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
92 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: Si-steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
91 Modeling a Multinomial Logit Model of Intercity Travel Mode Choice Behavior for All Trips in Libya

Authors: Manssour A. Abdulsalam Bin Miskeen, Ahmed Mohamed Alhodairi, Riza Atiq Abdullah Bin O. K. Rahmat

Abstract:

In the planning point of view, it is essential to have mode choice, due to the massive amount of incurred in transportation systems. The intercity travellers in Libya have distinct features, as against travellers from other countries, which includes cultural and socioeconomic factors. Consequently, the goal of this study is to recognize the behavior of intercity travel using disaggregate models, for projecting the demand of nation-level intercity travel in Libya. Multinomial Logit Model for all the intercity trips has been formulated to examine the national-level intercity transportation in Libya. The Multinomial logit model was calibrated using nationwide revealed preferences (RP) and stated preferences (SP) survey. The model was developed for deference purpose of intercity trips (work, social and recreational). The variables of the model have been predicted based on maximum likelihood method. The data needed for model development were obtained from all major intercity corridors in Libya. The final sample size consisted of 1300 interviews. About two-thirds of these data were used for model calibration, and the remaining parts were used for model validation. This study, which is the first of its kind in Libya, investigates the intercity traveler’s mode-choice behavior. The intercity travel mode-choice model was successfully calibrated and validated. The outcomes indicate that, the overall model is effective and yields higher precision of estimation. The proposed model is beneficial, due to the fact that, it is receptive to a lot of variables, and can be employed to determine the impact of modifications in the numerous characteristics on the need for various travel modes. Estimations of the model might also be of valuable to planners, who can estimate possibilities for various modes and determine the impact of unique policy modifications on the need for intercity travel.

Keywords: Multinomial logit model, improved intercity transport, intercity mode-choice behavior, disaggregate analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7867
90 Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples

Authors: Abdullah N. Olimat, Ahmad S. Awad, Faisal M. AL-Ghathian

Abstract:

Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m2 is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods.

Keywords: Optical density, specific optical density, transmittance, visibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
89 Estimating the Costs of Conservation in Multiple Output Agricultural Setting

Authors: T. Chaiechi, N. Stoeckl

Abstract:

Scarcity of resources for biodiversity conservation gives rise to the need of strategic investment with priorities given to the cost of conservation. While the literature provides abundant methodological options for biodiversity conservation; estimating true cost of conservation remains abstract and simplistic, without recognising dynamic nature of the cost. Some recent works demonstrate the prominence of economic theory to inform biodiversity decisions, particularly on the costs and benefits of biodiversity however, the integration of the concept of true cost into biodiversity actions and planning are very slow to come by, and specially on a farm level. Conservation planning studies often use area as a proxy for costs neglecting different land values as well as protected areas. These literature consider only heterogeneous benefits while land costs are considered homogenous. Analysis with the assumption of cost homogeneity results in biased estimation; since not only it doesn’t address the true total cost of biodiversity actions and plans, but also it fails to screen out lands that are more (or less) expensive and/or difficult (or more suitable) for biodiversity conservation purposes, hindering validity and comparability of the results. Economies of scope” is one of the other most neglected aspects in conservation literature. The concept of economies of scope introduces the existence of cost complementarities within a multiple output production system and it suggests a lower cost during the concurrent production of multiple outputs by a given farm. If there are, indeed, economies of scope then simplistic representation of costs will tend to overestimate the true cost of conservation leading to suboptimal outcomes. The aim of this paper, therefore, is to provide first road review of the various theoretical ways in which economies of scope are likely to occur of how they might occur in conservation. Consequently, the paper addresses gaps that have to be filled in future analysis.

Keywords: Cost, biodiversity conservation, Multi-output production systems, Empirical techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
88 A Novel Strategy for Oriented Protein Immobilization

Authors: Ching-Wei Tsai, Chih-I Liu, Ruoh-Chyu Ruaana

Abstract:

A new strategy for oriented immobilization of proteins was proposed. The strategy contains two steps. The first step is to search for a docking site away from the active site on the protein surface. The second step is trying to find a ligand that is able to grasp the targeted site of the protein. To avoid ligand binding to the active site of protein, the targeted docking site is selected to own opposite charges to those near the active site. To enhance the ligand-protein binding, both hydrophobic and electrostatic interactions need to be included. The targeted docking site should therefore contain hydrophobic amino acids. The ligand is then selected through the help of molecular docking simulations. The enzyme α-amylase derived from Aspergillus oryzae (TAKA) was taken as an example for oriented immobilization. The active site of TAKA is surrounded by negatively charged amino acids. All the possible hydrophobic sites on the surface of TAKA were evaluated by the free energy estimation through benzene docking. A hydrophobic site on the opposite side of TAKA-s active site was found to be positive in net charges. A possible ligand, 3,3-,4,4- – Biphenyltetra- carboxylic acid (BPTA), was found to catch TAKA by the designated docking site. Then, the BPTA molecules were grafted onto silica gels and measured the affinity of TAKA adsorption and the specific activity of thereby immobilized enzymes. It was found that TAKA had a dissociation constant as low as 7.0×10-6 M toward the ligand BPTA on silica gel. The increase in ionic strength has little effect on the adsorption of TAKA, which indicated the existence of hydrophobic interaction between ligands and proteins. The specific activity of the immobilized TAKA was compared with the randomly adsorbed TAKA on primary amine containing silica gel. It was found that the orderly immobilized TAKA owns a specific activity twice as high as the one randomly adsorbed by ionic interaction.

Keywords: Protein Oriented immobilization, Molecular docking, ligand design, surface modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
87 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
86 Pollution and Water Quality of the Beshar River

Authors: Fardin Boustani , Mohammah Hosein Hojati

Abstract:

The Beshar River is one aquatic ecosystem,which is affected by pollutants. This study was conducted to evaluate the effects of human activities on the water quality of the Beshar river. This river is approximately 190 km in length and situated at the geographical positions of 51° 20' to 51° 48' E and 30° 18' to 30° 52' N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province next to the city of Yasuj in southern Iran. The Beshar river has been contaminated by industrial, agricultural and other activities in this region such as factories, hospitals, agricultural farms, urban surface runoff and effluent of wastewater treatment plants. In order to evaluate the effects of these pollutants on the quality of the Beshar river, five monitoring stations were selected along its course. The first station is located upstream of Yasuj near the Dehnow village; stations 2 to 4 are located east, south and west of city; and the 5th station is located downstream of Yasuj. Several water quality parameters were sampled. These include pH, dissolved oxygen, biological oxygen demand (BOD), temperature, conductivity, turbidity, total dissolved solids and discharge or flow measurements. Water samples from the five stations were collected and analysed to determine the following physicochemical parameters: EC, pH, T.D.S, T.H, No2, DO, BOD5, COD during 2008 to 2009. The study shows that the BOD5 value of station 1 is at a minimum (1.5 ppm) and increases downstream from stations 2 to 4 to a maximum (7.2 ppm), and then decreases at station 5. The DO values of station 1 is a maximum (9.55 ppm), decreases downstream to stations 2 - 4 which are at a minimum (3.4 ppm), before increasing at station 5. The amount of BOD and TDS are highest at the 4th station and the amount of DO is lowest at this station, marking the 4th station as more highly polluted than the other stations. The physicochemical parameters improve at the 5th station due to pollutant degradation and dilution. Finally the point and nonpoint pollutant sources of Beshar river were determined and compared to the monitoring results.

Keywords: Beshar river, physicochemical parameter, waterpollution, Yasuj

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
85 Optimization of Quercus cerris Bark Liquefaction

Authors: Luísa P. Cruz-Lopes, Hugo Costa e Silva, Idalina Domingos, José Ferreira, Luís Teixeira de Lemos, Bruno Esteves

Abstract:

The liquefaction process of cork based tree barks has led to an increase of interest due to its potential innovation in the lumber and wood industries. In this particular study the bark of Quercus cerris (Turkish oak) is used due to its appreciable amount of cork tissue, although of inferior quality when compared to the cork provided by other Quercus trees. This study aims to optimize alkaline catalysis liquefaction conditions, regarding several parameters. To better comprehend the possible chemical characteristics of the bark of Quercus cerris, a complete chemical analysis was performed. The liquefaction process was performed in a double-jacket reactor heated with oil, using glycerol and a mixture of glycerol/ethylene glycol as solvents, potassium hydroxide as a catalyst, and varying the temperature, liquefaction time and granulometry. Due to low liquefaction efficiency resulting from the first experimental procedures a study was made regarding different washing techniques after the filtration process using methanol and methanol/water. The chemical analysis stated that the bark of Quercus cerris is mostly composed by suberin (ca. 30%) and lignin (ca. 24%) as well as insolvent hemicelluloses in hot water (ca. 23%). On the liquefaction stage, the results that led to higher yields were: using a mixture of methanol/ethylene glycol as reagents and a time and temperature of 120 minutes and 200 ºC, respectively. It is concluded that using a granulometry of <80 mesh leads to better results, even if this parameter barely influences the liquefaction efficiency. Regarding the filtration stage, washing the residue with methanol and then distilled water leads to a considerable increase on final liquefaction percentages, which proves that this procedure is effective at liquefying suberin content and lignocellulose fraction.

Keywords: Liquefaction, alkaline catalysis, optimization, Quercus cerris bark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
84 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
83 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Authors: Hamidullah Binol, Abdullah Bal

Abstract:

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.

Keywords: Food (Ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
82 Analysis of Surface Hardness, Surface Roughness, and Near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer. 

Keywords: Surface hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
81 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: Blast phenomenon, experimental methods, material models, numerical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
80 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: Computational modelling, evolutionary algorithms, genetic programming, hydrological modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3329
79 Validation on 3D Surface Roughness Algorithm for Measuring Roughness of Psoriasis Lesion

Authors: M.H. Ahmad Fadzil, Esa Prakasa, Hurriyatul Fitriyah, Hermawan Nugroho, Azura Mohd Affandi, S.H. Hussein

Abstract:

Psoriasis is a widespread skin disease affecting up to 2% population with plaque psoriasis accounting to about 80%. It can be identified as a red lesion and for the higher severity the lesion is usually covered with rough scale. Psoriasis Area Severity Index (PASI) scoring is the gold standard method for measuring psoriasis severity. Scaliness is one of PASI parameter that needs to be quantified in PASI scoring. Surface roughness of lesion can be used as a scaliness feature, since existing scale on lesion surface makes the lesion rougher. The dermatologist usually assesses the severity through their tactile sense, therefore direct contact between doctor and patient is required. The problem is the doctor may not assess the lesion objectively. In this paper, a digital image analysis technique is developed to objectively determine the scaliness of the psoriasis lesion and provide the PASI scaliness score. Psoriasis lesion is modelled by a rough surface. The rough surface is created by superimposing a smooth average (curve) surface with a triangular waveform. For roughness determination, a polynomial surface fitting is used to estimate average surface followed by a subtraction between rough and average surface to give elevation surface (surface deviations). Roughness index is calculated by using average roughness equation to the height map matrix. The roughness algorithm has been tested to 444 lesion models. From roughness validation result, only 6 models can not be accepted (percentage error is greater than 10%). These errors occur due the scanned image quality. Roughness algorithm is validated for roughness measurement on abrasive papers at flat surface. The Pearson-s correlation coefficient of grade value (G) of abrasive paper and Ra is -0.9488, its shows there is a strong relation between G and Ra. The algorithm needs to be improved by surface filtering, especially to overcome a problem with noisy data.

Keywords: psoriasis, roughness algorithm, polynomial surfacefitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
78 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.

Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
77 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are increasingly important in automated customer service. These models, adept at recognizing complex relationships between input and output sequences, are essential for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the model’s focus during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the context of chatbots utilizing the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Using the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k = 3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k = 3). These findings emphasize the crucial influence of selecting an appropriate attention-scoring function to enhance the performance of seq2seq models for chatbots, particularly highlighting the model integrating tanh activation as a promising approach to improving chatbot quality in customer support contexts.

Keywords: Attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90
76 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze

Abstract:

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
75 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range

Authors: A. Mínguez-Martínez, J. de Vicente

Abstract:

Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. In this paper, we propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments, by applying minor changes.

Keywords: Industrial environment, confocal microscope, optical measuring instrument, traceability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410
74 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: Neural network, aerodynamic angles, virtual sensor, unmanned aerial vehicle, air data system, flight test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1023
73 Spatial Variation of WRF Model Rainfall Prediction over Uganda

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo

Abstract:

Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.

Keywords: Convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1228
72 Two-Level Identification of HVAC Consumers for Demand Response Potential Estimation Based on Setpoint Change

Authors: M. Naserian, M. Jooshaki, M. Fotuhi-Firuzabad, M. Hossein Mohammadi Sanjani, A. Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a solution is presented to uncover consumers with high air conditioner demand among a large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: Data-driven analysis, demand response, direct load control, HVAC system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239
71 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry

Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh

Abstract:

The demand for energy is cumulatively increasing with time.  Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields.  In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector.  The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India.  A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system.  The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C).  Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.

Keywords: Organic rankine cycle, regenerative organic rankine cycle, waste heat recovery, Indian industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
70 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations

Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li

Abstract:

The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.

Keywords: CNC milling, CNC turning, surface roughness, Taguchi analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
69 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks

Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev

Abstract:

One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.

Keywords: Channel estimation, inter-cell interference, pilot contamination attacks, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677