Search results for: Dynamic load control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6292

Search results for: Dynamic load control

4402 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: Control, Identification, Robot, Co-manipulation, Sensor-less.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636
4401 Multi-Line Power Flow Control using Interline Power Flow Controller (IPFC) in Power Transmission Systems

Authors: A.V.Naresh Babu, S.Sivanagaraju, Ch.Padmanabharaju, T.Ramana

Abstract:

The interline power flow controller (IPFC) is one of the latest generation flexible AC transmission systems (FACTS) controller used to control power flows of multiple transmission lines. This paper presents a mathematical model of IPFC, termed as power injection model (PIM). This model is incorporated in Newton- Raphson (NR) power flow algorithm to study the power flow control in transmission lines in which IPFC is placed. A program in MATLAB has been written in order to extend conventional NR algorithm based on this model. Numerical results are carried out on a standard 2 machine 5 bus system. The results without and with IPFC are compared in terms of voltages, active and reactive power flows to demonstrate the performance of the IPFC model.

Keywords: flexible AC transmission systems (FACTS), interline power flow controller (IPFC), power injection model (PIM), power flow control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
4400 Optimal Sliding Mode Controller for Knee Flexion During Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168
4399 Home Network-Specific RBAC Model

Authors: Geon-Woo Kim, Do-Woo Kim, Jun-Ho Lee, Jin-Beon Hwang, Jong-Wook Han

Abstract:

As various mobile sensing technologies, remote control and ubiquitous infrastructure are developing and expectations on quality of life are increasing, a lot of researches and developments on home network technologies and services are actively on going, Until now, we have focused on how to provide users with high-level home network services, while not many researches on home network security for guaranteeing safety are progressing. So, in this paper, we propose an access control model specific to home network that provides various kinds of users with home network services up one-s characteristics and features, and protects home network systems from illegal/unnecessary accesses or intrusions.

Keywords: Home network security, RBAC, access control, authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
4398 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, ¬G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
4397 A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery

Authors: Beibei Han, Yong-Jin Yoon, Muhammad Hamidullah, Angel Tsu-Hui Lin, Woo-Tae Park

Abstract:

This paper presents the design of a ring-shaped tri-axial fore sensor that can be incorporated into the tip of a guidewire for use in minimally invasive surgery (MIS). The designed sensor comprises a ring-shaped structure located at the center of four cantilever beams. The ringdesign allows surgical tools to be easily passed through which largely simplified the integration process. Silicon nanowires (SiNWs) are used aspiezoresistive sensing elementsembeddedon the four cantilevers of the sensor to detect the resistance change caused by the applied load.An integration scheme with new designed guidewire tip structure having two coils at the distal end is presented. Finite element modeling has been employed in the sensor design to find the maximum stress location in order to put the SiNWs at the high stress regions to obtain maximum output. A maximum applicable force of 5 mN is found from modeling. The interaction mechanism between the designed sensor and a steel wire has been modeled by FEM. A linear relationship between the applied load on the steel wire and the induced stress on the SiNWs were observed.

Keywords: Triaxial MEMS force sensor, Ring shape, Silicon Nanowire, Minimally invasive surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
4396 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils

Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade

Abstract:

Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.

Keywords: Bearing capacity, reinforcement, geogrid, plate load test, layered soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
4395 Towards a Secure Storage in Cloud Computing

Authors: Mohamed Elkholy, Ahmed Elfatatry

Abstract:

Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.

Keywords: Access control, data integrity, data confidentiality, Kerberos authentication, cloud security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
4394 Disturbances of the Normal Operation of Kosovo Power System Regarding Atmospheric Discharges

Authors: B. Prebreza, I. Krasniqi, G. Kabashi, G. Pula, N. Avdiu

Abstract:

This paper discusses aspects of outages in the electric transmission network in the Kosovo Power System caused by the atmospheric discharges.

Frequency and location of the atmospheric discharges in Kosovo territory will be provided by a lightning location system ALARM (Automated Lightning Alert and Risk Management) and from the data from the Meteorological Department in Prishtina International Airport. These data will be used to make comparisons with the actual outages registered in the Kosovo Power System from the Kosovo Transmission, systems and market operator (KOSTT) during a specific time period.

The lines with the worst performance determined, regarding the atmospheric discharges, will be choose for further discussions in terms of over voltages caused by the direct or indirect lightning strokes.

Recommendations for protection in terms of insulator coordination and surge arresters will be given at the end and in this stage dynamic simulation will take part.

Keywords: Atmospheric discharges, dynamic simulations, Kosovo Power System, surge arresters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
4393 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: Carbon nanotubes, vibration control, piezoelectric layers, elastic foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
4392 Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater

Authors: Usha N. Murthy, Rekha H. B., Mahaveer Devoor

Abstract:

The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment - as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high color, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of color. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pretreated by electrochemical oxidation method where the process limits objectionable color while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.

Keywords: Electrochemical treatment, COD, color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
4391 Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles

Authors: Emi Govorčin Bajsić, Vesna Ocelić Bulatović, Miroslav Slouf, Ana Šitum

Abstract:

Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the cc for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content.

Keywords: Morphology, polycaprolactone, thermal properties, titanium dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4749
4390 Performance Trade-Off of File System between Overwriting and Dynamic Relocation on a Solid State Drive

Authors: Choulseung Hyun, Hunki Kwon, Jaeho Kim, Eujoon Byun, Jongmoo Choi, Donghee Lee, Sam H. Noh

Abstract:

Most file systems overwrite modified file data and metadata in their original locations, while the Log-structured File System (LFS) dynamically relocates them to other locations. We design and implement the Evergreen file system that can select between overwriting or relocation for each block of a file or metadata. Therefore, the Evergreen file system can achieve superior write performance by sequentializing write requests (similar to LFS-style relocation) when space utilization is low and overwriting when utilization is high. Another challenging issue is identifying performance benefits of LFS-style relocation over overwriting on a newly introduced SSD (Solid State Drive) which has only Flash-memory chips and control circuits without mechanical parts. Our experimental results measured on a SSD show that relocation outperforms overwriting when space utilization is below 80% and vice versa.

Keywords: Evergreen File System, Overwrite, Relocation, Solid State Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
4389 Design a Three-dimensional Pursuit Guidance Law with Feedback Linearization Method

Authors: Chien-Chun Kung, Feng-Lung Chiang, Kuei-Yi Chen

Abstract:

In this paper, we will implement three-dimensional pursuit guidance law with feedback linearization control method and study the effects of parameters. First, we introduce guidance laws and equations of motion of a missile. Pursuit guidance law is our highlight. We apply feedback linearization control method to obtain the accelerations to implement pursuit guidance law. The solution makes warhead direction follow with line-of-sight. Final, the simulation results show that the exact solution derived in this paper is correct and some factors e.g. control gain, time delay, are important to implement pursuit guidance law.

Keywords: Pursuit guidance law, feedback linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
4388 CNet Module Design of IMCS

Authors: Youkyung Park, SeungYup Kang, SungHo Kim, SimKyun Yook

Abstract:

IMCS is Integrated Monitoring and Control System for thermal power plant. This system consists of mainly two parts; controllers and OIS (Operator Interface System). These two parts are connected by Ethernet-based communication. The controller side of communication is managed by CNet module and OIS side is managed by data server of OIS. CNet module sends the data of controller to data server and receives commend data from data server. To minimizes or balance the load of data server, this module buffers data created by controller at every cycle and send buffered data to data server on request of data server. For multiple data server, this module manages the connection line with each data server and response for each request from multiple data server. CNet module is included in each controller of redundant system. When controller fail-over happens on redundant system, this module can provide data of controller to data sever without loss. This paper presents three main features – separation of get task, usage of ring buffer and monitoring communication status –of CNet module to carry out these functions.

Keywords: Ethernet communication, DCS, power plant, ring buffer, data integrity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
4387 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges

Authors: M. Yoneda

Abstract:

In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.

Keywords: Pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784
4386 Active Vibration Control of Passenger Seat with HFPIDCR Controlled Suspension Alternatives

Authors: Devdutt, M. L. Aggarwal

Abstract:

In this paper, passenger ride comfort issues are studied taking active quarter car model with three degrees of freedom. A hybrid fuzzy – PID controller with coupled rules (HFPIDCR) is designed for vibration control of passenger seat. Three different control strategies are considered. In first case, main suspension is controlled. In second case, passenger seat suspension is controlled. In third case, both main suspension and passenger seat suspensions are controlled. Passenger seat acceleration and displacement results are obtained using bump and sinusoidal type road disturbances. Finally, obtained simulation results of designed uncontrolled and controlled quarter car models are compared and discussed to select best control strategy for achieving high level of passenger ride comfort.

Keywords: Active suspension system, HFPIDCR controller, passenger ride comfort, quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
4385 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: Contex-sensitive, CFI, binary analysis, code reuse attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
4384 Runtime Monitoring Using Policy Based Approach to Control Information Flow for Mobile Apps

Authors: M. Sarrab, H. Bourdoucen

Abstract:

Mobile applications are verified to check the correctness or evaluated to check the performance with respect to specific security properties such as Availability, Integrity and Confidentiality. Where they are made available to the end users of the mobile application is achievable only to a limited degree using software engineering static verification techniques. The more sensitive the information, such as credit card data, personal medical information or personal emails being processed by mobile application, the more important it is to ensure the confidentiality of this information. Monitoring untrusted mobile application during execution in an environment where sensitive information is present is difficult and unnerving. The paper addresses the issue of monitoring and controlling the flow of confidential information during untrusted mobile application execution. The approach concentrates on providing a dynamic and usable information security solution by interacting with the mobile users during the runtime of mobile application in response to information flow events.

Keywords: Mobile application, Run-time verification, Usable security, Direct information flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
4383 Design of an SNMP Agent for OSGi Service Platforms

Authors: Pedro J. Muñoz Merino, Natividad Martínez Madrid, Ralf E. D. Seepold

Abstract:

On one hand, SNMP (Simple Network Management Protocol) allows integrating different enterprise elements connected through Internet into a standardized remote management. On the other hand, as a consequence of the success of Intelligent Houses they can be connected through Internet now by means of a residential gateway according to a common standard called OSGi (Open Services Gateway initiative). Due to the specifics of OSGi Service Platforms and their dynamic nature, specific design criterions should be defined to implement SNMP Agents for OSGi in order to integrate them into the SNMP remote management. Based on the analysis of the relation between both standards (SNMP and OSGi), this paper shows how OSGi Service Platforms can be included into the SNMP management of a global enterprise, giving implementation details about an SNMP Agent solution and the definition of a new MIB (Management Information Base) for managing OSGi platforms that takes into account the specifics and dynamic nature of OSGi.

Keywords: MIB, OSGi, Remote Management, SNMP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
4382 Impact of Wind Energy on Cost and Balancing Reserves

Authors: A. Khanal, A. Osareh, G. Lebby

Abstract:

Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost, as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study is show how the increases in wind generation will affect power system economics.

Keywords: Balancing Reserves, Optimization, Wind Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
4381 PID Parameter Optimization of an UAV Longitudinal Flight Control System

Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov

Abstract:

In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.

Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3742
4380 A Real Time Comparison of Standalone and Grid Connected Solar Photovoltaic Generation Systems

Authors: Sachin Vrajlal Rajani, Vivek Pandya, Ankit Suvariya

Abstract:

Green and renewable energy is getting extraordinary consideration today, because of ecological concerns made by blazing of fossil powers. Photovoltaic and wind power generation are the basic decisions for delivering power in this respects. Producing power by the sun based photovoltaic systems is known to the world, yet control makers may get confounded to pick between on-grid and off-grid systems. In this exploration work, an endeavor is made to compare the off-grid (stand-alone) and on-grid (grid-connected) frameworks. The work presents relative examination, between two distinctive PV frameworks situated at V.V.P. Engineering College, Rajkot. The first framework is 100 kW remain solitary and the second is 60 kW network joined. The real-time parameters compared are; output voltage, load current, power in-flow, power output, performance ratio, yield factor, and capacity factor. The voltage changes and the power variances in both frameworks are given exceptional consideration and the examination is made between the two frameworks to judge the focal points and confinements of both the frameworks.

Keywords: Standalone PV systems, grid connected PV systems, comparison, real time data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
4379 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip

Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner

Abstract:

This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.

Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
4378 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.

Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185
4377 Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study

Authors: Walid Chakroun, Sorour Alotaibi, Nesreen Ghaddar, Kamel Ghali

Abstract:

This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 °C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 °C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 °C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants’ thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.

Keywords: Thermal comfort, thermal sensation, predicted mean vote, thermal environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
4376 Modeling and Simulation of Robotic Arm Movement using Soft Computing

Authors: V. K. Banga, Jasjit Kaur, R. Kumar, Y. Singh

Abstract:

In this research paper we have presented control architecture for robotic arm movement and trajectory planning using Fuzzy Logic (FL) and Genetic Algorithms (GAs). This architecture is used to compensate the uncertainties like; movement, friction and settling time in robotic arm movement. The genetic algorithms and fuzzy logic is used to meet the objective of optimal control movement of robotic arm. This proposed technique represents a general model for redundant structures and may extend to other structures. Results show optimal angular movement of joints as result of evolutionary process. This technique has edge over the other techniques as minimum mathematics complexity used.

Keywords: Kinematics, Genetic algorithms (GAs), Fuzzy logic(FL), Optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
4375 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik

Abstract:

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3117
4374 Optimizing PID Parameters Using Harmony Search

Authors: N. Arulanand, P. Dhara

Abstract:

Optimizing the parameters in the controller plays a vital role in the control theory and its applications. Optimizing the PID parameters is finding out the best value from the feasible solutions. Finding the optimal value is an optimization problem. Inverted Pendulum is a very good platform for control engineers to verify and apply different logics in the field of control theory. It is necessary to find an optimization technique for the controller to tune the values automatically in order to minimize the error within the given bounds. In this paper, the algorithmic concepts of Harmony search (HS) and Genetic Algorithm (GA) have been analyzed for the given range of values. The experimental results show that HS performs well than GA.

Keywords: Genetic Algorithm, Harmony Search Algorithm, Inverted Pendulum, PID Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
4373 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: Parameterization, response surface, structure optimization, pressure hull.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154