Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30579
Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles

Authors: Emi Govorčin Bajsić, Vesna Ocelić Bulatović, Miroslav Slouf, Ana Šitum


Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the cc for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content.

Keywords: Morphology, Thermal Properties, titanium dioxide, polycaprolactone

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4371


[1] L. Cabedo, J. L. Feijoo, M. P. Villanueva, J. M. Lagarόn, E. Giménez "Optimization of Biodegradable nanocomposites Based on aPLA/PCL Blends for Food packaging Application”, Macromol. Symp., Vol. 233, no. 1 , pp. 191-197, Febr. 2006.
[2] D. Walsh, T. Furuzono, J. Tanaka, "Preparation of porous composite implant materials by in situ polymerization of porous apatite containing -caprolactone or methyl methacrylate”, Biomaterials, Vol. 22, no. 11, pp. 1205-1212, Jun. 2001.
[3] J. Y. Liu, L. Reni, Q. Wei, J. L. Wu, S. Liu, Y. J. Wang, G. Y. Li, "Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites”, eXPRESS Polym. Lett., Vol. 5, no. 8, pp. 742-752, 2011.
[4] C. S. Wu, "In situ polymerization of titanium isopropoxide in polycaprolactone: Properties and characterization of the hybrid nanocomposites”, J. Appl. Polym. Sci., Vol. 92, no. 3, pp. 1749-1757, May 2004.
[5] G. J. Nohynek, J. Lademann, C. Riband, M. S. Roberts, "Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety”, Crit. Rev. Toxicol., Vol. 37, no. 3 , pp. 251-277, Mar. 2007.
[6] A. M.-Bonilla, M. L. Cerrada, M. Fernández-García, A. Kubacka, M. Ferrer, M. Fernández-García, "Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties”, Int. J. Mol. Sci., Vol. 14, no. 5, pp. 9249-9266, Apr. 2011.
[7] A. Kubacka, C. Serrano, M. Ferrer, H. Lünsdorf, P. Bielecki, M. L. Cerrada, M. Fernández-García, M. Fernández-García, "High performance dual action polymer TiO2 nanocomposites films via melting processing”, Nano Lett., Vol. 7, no. 8 , pp. 2529-2534, July 2007.
[8] M. L. Cerrada, C. Serrano, M. Sánchez-Chaves, M. Fernández-García, F. Fernández-Martín, A. de Andrés, R. J. Jiménez Riobόo, A. Kubacka, M. Ferrer, M. Fernández-García, "Biocidal capability optimization in organic inorganic nanocomposites based on titania”, Environ. Sci. Techn., Vol. 18, no. 5, pp. 1630-1634, Jan 2009.
[9] H. Tsuji, T. Ishizaka, "Porous biodegradable polyesters, 3a preparation of porous poly(ε-caprolactone) films from blends by selective enzymatic removal of poly(L-lactide)”, Macromal. Biosci., Vol. 1, pp. 59-65, 2001.
[10] V. Crescenzi, G. Manzini, G. Galzolari, C. Borri, "Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains”, Eur. Polym. J., Vol. 8, no. 3, pp. 449-463, March 1972.
[11] J. Jancar, J. F. Douglas, F. W. Starr; S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sternstein, M. J. Buehler, "Current Issues in Research on Structure-Property Relationships in Polymer Nanocomposites”, Polymer, Vol. 51, no. 15, pp. 3321-3343, July 2010.
[12] Y. Ding, S. Pawlus, A. P. Sokolov, J. F. Douglas, A. Karim, C. L. Soles, "Dielectric Spectroscopy Investigation of Relaxation in C60-Polyisoprene Nanocomposites”, Macromolecules, Vol. 42, no.8, pp. 3201-3206, March 2009.
[13] K. Fukushima, D. Tabuai, G. Camino, "Nanocomposites of PLA and PCL based on montmorillonite and sepiolite”, Mater. Sci. Eng., Vol. 29, no.4, pp. 1433-1441, May 2009.