Search results for: spatial optimization
688 An Improved Ant Colony Algorithm for Genome Rearrangements
Authors: Essam Al Daoud
Abstract:
Genome rearrangement is an important area in computational biology and bioinformatics. The basic problem in genome rearrangements is to compute the edit distance, i.e., the minimum number of operations needed to transform one genome into another. Unfortunately, unsigned genome rearrangement problem is NP-hard. In this study an improved ant colony optimization algorithm to approximate the edit distance is proposed. The main idea is to convert the unsigned permutation to signed permutation and evaluate the ants by using Kaplan algorithm. Two new operations are added to the standard ant colony algorithm: Replacing the worst ants by re-sampling the ants from a new probability distribution and applying the crossover operations on the best ants. The proposed algorithm is tested and compared with the improved breakpoint reversal sort algorithm by using three datasets. The results indicate that the proposed algorithm achieves better accuracy ratio than the previous methods.
Keywords: Ant colony algorithm, Edit distance, Genome breakpoint, Genome rearrangement, Reversal sort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905687 Implementation-Oriented Discussion for Historical and Cultural Villages’ Conservation Planning
Authors: Xing Zhang
Abstract:
Since the State Council of China issued the Regulations on the Conservation of Historical Cultural Towns and Villages in 2008, formulation of conservation planning has been carried out in national, provincial and municipal historical and cultural villages for protection needs, which provides a legal basis for inheritance of historical culture and protection of historical resources. Although the quantity and content of the conservation planning are continually increasing, the implementation and application are still ambiguous. To solve the aforementioned problems, this paper explores methods to enhance the implementation of conservation planning from the perspective of planning formulation. Specifically, the technical framework of "overall objectives planning - sub-objectives planning - zoning guidelines - implementation by stages" is proposed to implement the planning objectives in different classifications and stages. Then combined with details of the Qiqiao historical and cultural village conservation planning project in Ningbo, five sub-objectives are set, which are implemented through the village zoning guidelines. At the same time, the key points and specific projects in the near-term, medium-term and long-term work are clarified, and the spatial planning is transformed into the action plan with time scale. The proposed framework and method provide a reference for the implementation and management of the conservation planning of historical and cultural villages in the future.Keywords: Conservation planning, planning by stages, planning implementation, zoning guidelines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782686 Cellolytic Activity of Bacteria of the Bacillus Genus Isolated from the Soil of Zailiskiy Alatau Slopes
Authors: I. Savitskaya, A. Kistaubayeva, A. Zhubanova, I. Blavachinskaiya, D. Ibrayeva, M. Abdulzhanova, A. Otarbay, A.Isabekova
Abstract:
This study was conducted for the investigation of number of cellulolytic bacteria and their ability in decomposition. Seven samples surface soil were collected on cellulose Zailiskii Alatau slopes. Cellulolitic activity of new strains of Bacillus, isolated from soil is determined. Isolated cellulose degrading bacteria were screened for determination of the highest cellulose activity by quantitative assay using Congo red, gravimetric assay and colorimetric DNS method trough of the determination of the parameters of sugar reduction. Strains are assigned to: B.subtilis, B.licheniformis, B. cereus and, В. megaterium. Bacillus strains consisting of several different types of cellulases have broad substrate specificity of cellulase complexes formed by them. Cellulolitic bacteria were recorded to have highest cellulase activity and selected for optimization of cellulase enzyme production.Keywords: Cellulose-degrading bacteria, cellulase complex, foothills soil, screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305685 An Optimized Virtual Scheme for Reducing Collisions in MAC Layer
Authors: M. Sivakumar, S. Saravanan
Abstract:
The main function of Medium Access Control (MAC) is to share the channel efficiently between all nodes. In the real-time scenario, there will be certain amount of wastage in bandwidth due to back-off periods. More bandwidth will be wasted in idle state if the back-off period is very high and collision may occur if the back-off period is small. So, an optimization is needed for this problem. The main objective of the work is to reduce delay due to back-off period thereby reducing collision and increasing throughput. Here a method, called the virtual back-off algorithm (VBA) is used to optimize the back-off period and thereby it increases throughput and reduces collisions. The main idea is to optimize the number of transmission for every node. A counter is introduced at each node to implement this idea. Here counter value represents the sequence number. VBA is classified into two types VBA with counter sharing (VBA-CS) and VBA with no counter sharing (VBA-NCS). These two classifications of VBA are compared for various parameters. Simulation is done in NS-2 environment. The results obtained are found to be promising.
Keywords: VBA, sequence number, counter, back-off period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386684 Design Optimization Methodology of CMOS Active Mixers for Multi-Standard Receivers
Authors: S. Douss, F. Touati, M. Loulou
Abstract:
A design flow of multi-standard down-conversion CMOS mixers for three modern standards: Global System Mobile, Digital Enhanced Cordless Telephone and Universal Mobile Telecommunication Systems is presented. Three active mixer-s structures are studied. The first is based on the Gilbert cell which gives a tolerable noise figure and linearity with a low conversion gain. The second and third structures use the current bleeding and charge injection techniques in order to increase the conversion gain. An improvement of about 2 dB of the conversion gain is achieved without a considerable degradation of the other characteristics. The models used for noise figure, conversion gain and IIP3 used are studied. This study describes the nature of trade-offs inherent in such structures and gives insights that help in identifying which structure is better for given conditions.Keywords: Active mixer, Radio-frequency transceiver, Multistandardfront end, Gilbert cell, current bleeding, charge injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490683 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data
Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi
Abstract:
Edgeworth Approximation, Bootstrap and Monte Carlo Simulations have a considerable impact on the achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that have the components of a Cash-Flow of one of the most successful businesses in the world, as the financial activity, operational activity and investing activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case we have created a Vector Autoregression model, and after that we have generated the impulse responses in the terms of Asymptotic Analysis (Edgeworth Approximation), Monte Carlo Simulations and Residual Bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied, that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.
Keywords: Autoregression, Bootstrap, Edgeworth Expansion, Monte Carlo Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595682 Agent-Based Simulation for Supply Chain Transport Corridors
Authors: Kamalendu Pal
Abstract:
Supply chains are the backbone of trade and commerce. Their logistics use different transport corridors on regular basis for operational purpose. The international supply chain transport corridors include different infrastructure elements (e.g. weighbridge, package handling equipments, border clearance authorities, and so on). This paper presents the use of multi-agent systems (MAS) to model and simulate some aspects of transportation corridors, and in particular the area of weighbridge resource optimization for operational profit. An underlying multi-agent model provides a means of modeling the relationships among stakeholders in order to enable coordination in a transport corridor environment. Simulations of the costs of container unloading, reloading, and waiting time for queuing up tracks have been carried out using data sets. Results of the simulation provide the potential guidance in making decisions about optimal service resource allocation in a trade corridor.Keywords: Multi-agent systems, simulation, supply chain, transport corridor, weighbridge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160681 A Meta-Heuristic Algorithm for Set Covering Problem Based on Gravity
Authors: S. Raja Balachandar, K. Kannan
Abstract:
A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving large size set covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the set covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.
Keywords: Set covering problem, velocity, gravitational force, Newton's law, meta heuristic, combinatorial optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232680 Optimization of Heat Treatment Due to Austenising Temperature, Time and Quenching Solution in Hadfield Steels
Authors: Sh. Hosseini, M. B. Limooei, M. Hossein Zade, E. Askarnia, Z. Asadi
Abstract:
Manganese steel (Hadfield) is one of the important alloys in industry due to its special properties. High work hardening ability with appropriate toughness and ductility are the properties that caused this alloy to be used in wear resistance parts and in high strength condition. Heat treatment is the main process through which the desired mechanical properties and microstructures are obtained in Hadfield steel. In this study various heat treatment cycles, differing in austenising temperature, time and quenching solution are applied. For this purpose, the same samples of manganese steel was heat treated in 9 different cycles, and then the mechanical properties and microstructures were investigated. Based on the results of the study, the optimum heat treatment cycle was obtained.
Keywords: Manganese steel (Hadfield), heat treatment, austenising temperature, austenising time, quenching solution, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4492679 Development of a New Method for T-joint Specimens Testing under Shear Loading
Authors: R. Doubrava, R. Růžek
Abstract:
Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fibre reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.
Keywords: T-joint, shear, composite, mechanical testing, Finite Element analysis, methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660678 Estimation of Forest Fire Emission in Thailand by Using Remote Sensing Information
Authors: A. Junpen, S. Garivait, S. Bonnet, A. Pongpullponsak
Abstract:
The forest fires in Thailand are annual occurrence which is the cause of air pollutions. This study intended to estimate the emission from forest fire during 2005-2009 using MODerateresolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites, experimental data, and statistical data. The forest fire emission is estimated using equation established by Seiler and Crutzen in 1982. The spatial and temporal variation of forest fire emission is analyzed and displayed in the form of grid density map. From the satellite data analysis suggested between 2005 and 2009, the number of fire hotspots occurred 86,877 fire hotspots with a significant highest (more than 80% of fire hotspots) in the deciduous forest. The peak period of the forest fire is in January to May. The estimation on the emissions from forest fires during 2005 to 2009 indicated that the amount of CO, CO2, CH4, and N2O was about 3,133,845 tons, 47,610.337 tons, 204,905 tons, and 6,027 tons, respectively, or about 6,171,264 tons of CO2eq. They also emitted 256,132 tons of PM10. The year 2007 was found to be the year when the emissions were the largest. Annually, March is the period that has the maximum amount of forest fire emissions. The areas with high density of forest fire emission were the forests situated in the northern, the western, and the upper northeastern parts of the country.
Keywords: Emissions, Forest fire, Remote sensing information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194677 Dynamic Slope Scaling Procedure for Stochastic Integer Programming Problem
Authors: Takayuki Shiina
Abstract:
Mathematical programming has been applied to various problems. For many actual problems, the assumption that the parameters involved are deterministic known data is often unjustified. In such cases, these data contain uncertainty and are thus represented as random variables, since they represent information about the future. Decision-making under uncertainty involves potential risk. Stochastic programming is a commonly used method for optimization under uncertainty. A stochastic programming problem with recourse is referred to as a two-stage stochastic problem. In this study, we consider a stochastic programming problem with simple integer recourse in which the value of the recourse variable is restricted to a multiple of a nonnegative integer. The algorithm of a dynamic slope scaling procedure for solving this problem is developed by using a property of the expected recourse function. Numerical experiments demonstrate that the proposed algorithm is quite efficient. The stochastic programming model defined in this paper is quite useful for a variety of design and operational problems.Keywords: stochastic programming problem with recourse, simple integer recourse, dynamic slope scaling procedure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616676 Long Term Changes of Water Quality in Latvia
Authors: Maris Klavins, Valery Rodinov
Abstract:
The aim of this study was to analyze long term changes of surface water quality in Latvia, spatial variability of water chemical composition, possible impacts of different pollution sources as well as to analyze the measures to protect national water resources - river basin management. Within this study, the concentrations of major water ingredients and microelements in major rivers and lakes of Latvia have been determined. Metal concentrations in river and lake waters were compared with water chemical composition. The mean concentrations of trace metals in inland waters of Latvia are appreciably lower than the estimated world averages for river waters and close to or lower than background values, unless regional impacts determined by local geochemistry. This may be explained by a comparatively lower level of anthropogenic load. In the same time in several places, direct anthropogenic impacts are evident, regarding influences of point sources both transboundary transport impacts. Also, different processes related to pollution of surface waters in Latvia have been analyzed. At first the analysis of changes and composition of pollutant emissions in Latvia has been realized, and the obtained results were compared with actual composition of atmospheric precipitation and their changes in time.
Keywords: Water quality, trend analysis, pollution, human impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003675 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm
Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho
Abstract:
Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.
Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988674 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps
Authors: Engin Yesil, Leon Urbas
Abstract:
Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841673 Micro-Hydrokinetic for Remote Rural Electrification
Authors: S. P. Koko, K. Kusakana, H. J. Vermaak
Abstract:
Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).
Keywords: Economic analysis, Micro-hydrokinetic system, Rural-electrification, Stand-alone system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2981672 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller
Authors: Sufian Ashraf Mazhari, Surendra Kumar
Abstract:
This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216671 Dynamics of Roe Deer (Capreolus capreolus) Vehicle Collisions in Lithuania: Influence of the Time Factors
Authors: Lina Galinskaitė, Gytautas Ignatavičius
Abstract:
Animal vehicle collisions (AVCs) affect human safety, cause property damage and wildlife welfare. The number of AVCs are increasing and creating serious implications for the animal conservation and management. Roe deer (Capreolus capreolus) and other large ungulates (moose, wild boar, red deer) are the most frequently collided ungulate with vehicles in Europe. Therefore, we analyzed temporal patterns of roe deer vehicle collisions (RDVC) occurring in Lithuania. Using a comprehensive dataset, consisting of 15,891 data points, we examined the influence of different time units (i.e. time of the day, day of week, month, and season) on RDVC. We identified accident periods within the analyzed time units. Highest frequencies of RDVC occurred on Fridays. Highest frequencies of roe deer-vehicle accidents occurred in May, November and December. Regarding diurnal patterns, most of RDVC occur after sunset and before sunset (during dark hours). Since vehicle collisions with animals showed temporal variation, these should be taken into consideration in developing statistical models of spatial AVC patterns, and also in planning strategies to reduce accident risk.
Keywords: Animal vehicle collision, diurnal patterns, road safety, roe deer, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496670 The Optimization of Sun Collector Parameters
Authors: István Patkó, Hosam Bayoumi Hamuda, András Medve, András Szeder
Abstract:
In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.
Keywords: Heat energy, tilt angle, direction of sun collector, contamination of surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757669 Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints
Authors: Mohammad Reza Ghasemi, Amin Ghorbani
Abstract:
The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.Keywords: Weight Minimization, Frequency Constraints, Steel Frames, ANN, WNN, RASP Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740668 Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463667 Innovation and Technologies Synthesis of Various Components: A Contribution to the Precision Irrigation Development for Open-Field Fruit Orchards
Authors: P. Chatrabhuti, S. Visessri, T. Charinpanitkul
Abstract:
Precision irrigation (PI) technology has emerged as a solution to optimize water usage in agriculture, aiming to maximize crop yields while minimizing water waste. Developing a PI for commercialization requires developers to research, synthesize, evaluate, and select appropriate technologies and make use of such information to produce innovative products. The objective of this review is to facilitate innovators by providing them with a summary of existing knowledge and the identification of gaps in research linking to the innovative development of PI. This paper reviews and synthesizes technologies and components relevant to precision irrigation, highlighting its potential benefits and challenges. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework is used for the review. As a result of this review, the different technologies have limitations and may only be suitable for specific orchards or spatial settings. The current technologies are readily available in a range of options, from affordable controllers to high-performance systems that are both reliable and precise. Furthermore, the future prospects for incorporating artificial intelligence and machine learning techniques hold promise for advancing autonomous irrigation systems.
Keywords: Innovation synthesis, technology assessment, precision irrigation technologies, precision irrigation components, new product development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26666 On the Paradigm Shift of the Overall Urban Design in China
Authors: Gaoyuan Wang, Tian Chen, Junnan Liu
Abstract:
Facing a period of major change that is rarely seen in a century, China formulates the 14th Five-Year Plan and places emphasis on promoting high-quality development. In this context, the overall urban design has become a crucial and systematic tool for high-quality urban development. However, there are bottlenecks in the cognition of nature, content scope and transmission mechanisms of the current overall urban design in China. The paper interprets the emerging demands of the 14th Five-Year Plan on urban design in terms of new value-quality priority, new dynamic-space performance, new target-region coordination and new path-refined governance. Based on the new trend and appeal, the multi-dimensional thinking integrated with the major tasks of urban design are proposed accordingly, which is the biomass thinking in ecological, production and living element, the strategic thinking in spatial structure, the systematic thinking in the cityscape, the low-carbon thinking in urban form, the governance thinking in public space, the user thinking in design implementation. The paper explores the possibility of transforming the value thinking and technical system of urban design in China and provides a breakthrough path for the urban planning and design industry to better respond to the propositions of the country’s 14th Five-Year Plan.
Keywords: China’s 14th five-year plan, overall urban design, urban design thinking, transformation of urban design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539665 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.
Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937664 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction
Authors: Ε. Giovanis
Abstract:
In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420663 The Rank-scaled Mutation Rate for Genetic Algorithms
Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac
Abstract:
A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.
Keywords: Genetic algorithms, mutation rate control, adaptive mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669662 Off-Line Hand Written Thai Character Recognition using Ant-Miner Algorithm
Authors: P. Phokharatkul, K. Sankhuangaw, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
Much research into handwritten Thai character recognition have been proposed, such as comparing heads of characters, Fuzzy logic and structure trees, etc. This paper presents a system of handwritten Thai character recognition, which is based on the Ant-minor algorithm (data mining based on Ant colony optimization). Zoning is initially used to determine each character. Then three distinct features (also called attributes) of each character in each zone are extracted. The attributes are Head zone, End point, and Feature code. All attributes are used for construct the classification rules by an Ant-miner algorithm in order to classify 112 Thai characters. For this experiment, the Ant-miner algorithm is adapted, with a small change to increase the recognition rate. The result of this experiment is a 97% recognition rate of the training set (11200 characters) and 82.7% recognition rate of unseen data test (22400 characters).Keywords: Hand written, Thai character recognition, Ant-mineralgorithm, distinct feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931661 Discovering Complex Regularities by Adaptive Self Organizing Classification
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.
Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563660 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images
Authors: Shahriar Farzam, Maryam Rastgarpour
Abstract:
Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).
Keywords: Curvelet transform, image enhancement, CBCT, image denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260659 Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines
Authors: Zoran Jovanovic, Zoran Masonicic, S. Dragutinovic, Z. Sakota
Abstract:
In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.
Keywords: Automotive flows, flame propagation, combustion modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293