Search results for: Decision Feature
497 A Simplified Single Correlator Rake Receiver for CDMA Communications
Authors: K. Murali Krishna, Abhijit Mitra, C. Ardil
Abstract:
This paper presents a single correlator RAKE receiver for direct sequence code division multiple access (DS-CDMA) systems. In conventional RAKE receivers, multiple correlators are used to despread the multipath signals and then to align and combine those signals in a later stage before making a bit decision. The simplified receiver structure presented here uses a single correlator and single code sequence generator to recover the multipaths. Modified Walsh- Hadamard codes are used here for data spreading that provides better uncorrelation properties for the multipath signals. The main advantage of this receiver structure is that it requires only a single correlator and a code generator in contrary to the conventional RAKE receiver concept with multiple correlators. It is shown in results that the proposed receiver achieves better bit error rates in comparison with the conventional one for more than one multipaths.
Keywords: RAKE receiver, Code division multiple access, ModifiedWalsh-Hadamard codes, Single correlator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643496 Financial Portfolio Optimization in Electricity Markets: Evaluation via Sharpe Ratio
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity plays an indispensable role in human life and the economy. It is a unique product or service that must be balanced instantaneously, as electricity is not stored, generation and consumption should be proportional. Effective and efficient use of electricity is very important not only for society, but also for the environment. A competitive electricity market is one of the best ways to provide a suitable platform for effective and efficient use of electricity. On the other hand, it carries some risks that should be carefully managed by the market players. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Markowitz’s Mean-variance, Down-side and Semi-variance methods for a case study. Performance of optimal electricity sale solutions are measured and evaluated via Sharpe-Ratio, and the optimal portfolio solutions are improved. Two years of historical weekdays’ price data of the Turkish Day Ahead Market are used to demonstrate the approach.
Keywords: Electricity market, portfolio optimization, risk management in electricity market, Sharpe ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485495 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.
Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598494 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.
Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75493 Hybridized Technique to Analyze Workstress Related Data via the StressCafé
Authors: Anusua Ghosh, Andrew Nafalski, Jeffery Tweedale, Maureen Dollard
Abstract:
This paper presents anapproach of hybridizing two or more artificial intelligence (AI) techniques which arebeing used to fuzzify the workstress level ranking and categorize the rating accordingly. The use of two or more techniques (hybrid approach) has been considered in this case, as combining different techniques may lead to neutralizing each other-s weaknesses generating a superior hybrid solution. Recent researches have shown that there is a need for a more valid and reliable tools, for assessing work stress. Thus artificial intelligence techniques have been applied in this instance to provide a solution to a psychological application. An overview about the novel and autonomous interactive model for analysing work-stress that has been developedusing multi-agent systems is also presented in this paper. The establishment of the intelligent multi-agent decision analyser (IMADA) using hybridized technique of neural networks and fuzzy logic within the multi-agent based framework is also described.Keywords: Fuzzy logic, intelligent agent, multi-agent systems, neural network, workplace stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3967492 Intelligent Multi-Agent Middleware for Ubiquitous Home Networking Environments
Authors: Minwoo Son, Seung-Hun Lee, Dongkyoo Shin, Dongil Shin
Abstract:
The next stage of the home networking environment is supposed to be ubiquitous, where each piece of material is equipped with an RFID (Radio Frequency Identification) tag. To fully support the ubiquitous environment, home networking middleware should be able to recommend home services based on a user-s interests and efficiently manage information on service usage profiles for the users. Therefore, USN (Ubiquitous Sensor Network) technology, which recognizes and manages a appliance-s state-information (location, capabilities, and so on) by connecting RFID tags is considered. The Intelligent Multi-Agent Middleware (IMAM) architecture was proposed to intelligently manage the mobile RFID-based home networking and to automatically supply information about home services that match a user-s interests. Evaluation results for personalization services for IMAM using Bayesian-Net and Decision Trees are presented.Keywords: Intelligent Agents, Home Network, Mobile RFID, Intelligent Middleware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443491 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.
Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449490 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm
Authors: Yesubai Rubavathi Charles, Ravi Ramraj
Abstract:
In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822489 Fake Account Detection in Twitter Based on Minimum Weighted Feature set
Authors: Ahmed El Azab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny
Abstract:
Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting the fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, and then the determined factors are applied using different classification techniques. A comparison of the results of these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent researches in the same area; this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts; moreover, the study can be applied on different social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.Keywords: Fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5837488 An Extended Model for Sustainable Food and Nutrition Security in the Agrifood Sector
Authors: Ioannis Manikas
Abstract:
The increased consumer demand for environmentally friendly production and distribution practices and the stricter environmental regulations turned environmental aspects into important criteria in business decision-making. On the other hand, Food and Nutrition Security (FNS) has evolved dramatically during the last decades in theory and practice serving as a reference point for exchanging experiences among all agents involved in programs and projects to fostering policy and strategy development. Global pressures make it more important than ever to gain a better understanding of the contribution that agrifood businesses make to FNS and to examine ways to make them more resilient in an increasingly globalized and uncertain world. This study extends the standard three-dimensional model of sustainability to include two more dimensions: A technological dimension and a policy/political dimension. Apart from the economic, environmental and social dimensions regularly used in sustainability literature, the extended model will accurately represent the measures and policies addressing food and nutrition security.Keywords: Food and nutrition security, sustainability, food safety, resilience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477487 Holomorphic Prioritization of Sets within Decagram of Strategic Decision Making of POSM Using Operational Research (OR): Analytic Hierarchy Process (AHP) Analysis
Authors: Elias O. Tembe, Hussain A. Al-Salamin
Abstract:
There is decagram of strategic decisions of operations and production/service management (POSM) within operational research (OR) which must collate, namely: design, inventory, quality, location, process and capacity, layout, scheduling, maintain ace, and supply chain. This paper presents an architectural configuration conceptual framework of a decagram of sets decisions in a form of mathematical complete graph and abelian graph. Mathematically, a complete graph is undirected (UDG), and directed (DG) a relationship where every pair of vertices is connected, collated, confluent, and holomorphic. There has not been any study conducted which, however, prioritizes the holomorphic sets which of POMS within OR field of study. The study utilizes OR structured technique known as The Analytic Hierarchy Process (AHP) analysis for organizing, sorting and prioritizing(ranking) the sets within the decagram of POMS according to their attribution (propensity), and provides an analysis how the prioritization has real-world application within the 21st century.
Keywords: AHP analysis, Decagram, Decagon, Holomorphic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000486 Application of Voltage Stability Indices for Proper Placement of STATCOM under Load Increase Scenario
Authors: A. S. Telang, P. P. Bedekar
Abstract:
In today’s world, electrical energy has become an indispensable component of all aspects of modern human life. Reliability, security and stability are the key aspects of any power system. Failure to meet any of these three aspects results into a great impediment to modern life. Modern power systems are being subjected to heavily stressed conditions leading to voltage stability problems. If the voltage stability problems are not mitigated properly through proper voltage stability assessment methods, cascading events may occur which may lead to voltage collapse or blackout events. Modern FACTS devices like STATCOM are one of the measures to overcome the blackout problems. As these devices are very costly, they must be installed properly at suitable locations, mostly at weak bus. Line voltage stability indices such as FVSI, Lmn and LQP play important role for identification of a weak bus. This paper presents evaluation of these line stability indices for the assessment of reliable information about the closeness of the power system to voltage collapse. PSAT is a user-friendly MATLAB toolbox, of which CPF is an important feature which has been extensively used for the placement of STATCOM to assess the stability. Novelty of the present research work lies in that the active and reactive load has been changed simultaneously at all the load buses under consideration. MATLAB code has been developed for the same and tested successfully on various standard IEEE test systems. The results for standard IEEE14 bus test system, specifically, are presented in this paper.
Keywords: Voltage stability analysis, voltage collapse, PSAT, CPF, VSI, FVSI, Lmn, LQP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783485 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid
Authors: Hassan Hajabdollahi
Abstract:
Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.
Keywords: Shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119484 Elliptical Features Extraction Using Eigen Values of Covariance Matrices, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper, we introduce a new method for elliptical object identification. The proposed method adopts a hybrid scheme which consists of Eigen values of covariance matrices, Circular Hough transform and Bresenham-s raster scan algorithms. In this approach we use the fact that the large Eigen values and small Eigen values of covariance matrices are associated with the major and minor axial lengths of the ellipse. The centre location of the ellipse can be identified using circular Hough transform (CHT). Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain a small number of nonzero elements they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of circumference pixels is identified using raster scan algorithm which uses the geometrical symmetry property. This method does not require the evaluation of tangents or curvature of edge contours, which are generally very sensitive to noise working conditions. The proposed method has the advantages of small storage, high speed and accuracy in identifying the feature. The new method has been tested on both synthetic and real images. Several experiments have been conducted on various images with considerable background noise to reveal the efficacy and robustness. Experimental results about the accuracy of the proposed method, comparisons with Hough transform and its variants and other tangential based methods are reported.Keywords: Circular Hough transform, covariance matrix, Eigen values, ellipse detection, raster scan algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641483 Financial Portfolio Optimization in Turkish Electricity Market via Value at Risk
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity has an indispensable role in human daily life, technological development and economy. It is a special product or service that should be instantaneously generated and consumed. Sources of the world are limited so that effective and efficient use of them is very important not only for human life and environment but also for technological and economic development. Competitive electricity market is one of the important way that provides suitable platform for effective and efficient use of electricity. Besides benefits, it brings along some risks that should be carefully managed by a market player like Electricity Generation Company. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Value at Risk methods for case studies. Performance of optimal electricity sale solutions are measured and the portfolio performance has been evaluated via Sharpe-Ratio, and compared with conventional approach. Biennial historical electricity price data of Turkish Day Ahead Market are used to demonstrate the approach.Keywords: Electricity market, portfolio optimization, risk management, Sharpe ratio, value at risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052482 A Case Study on Appearance Based Feature Extraction Techniques and Their Susceptibility to Image Degradations for the Task of Face Recognition
Authors: Vitomir Struc, Nikola Pavesic
Abstract:
Over the past decades, automatic face recognition has become a highly active research area, mainly due to the countless application possibilities in both the private as well as the public sector. Numerous algorithms have been proposed in the literature to cope with the problem of face recognition, nevertheless, a group of methods commonly referred to as appearance based have emerged as the dominant solution to the face recognition problem. Many comparative studies concerned with the performance of appearance based methods have already been presented in the literature, not rarely with inconclusive and often with contradictory results. No consent has been reached within the scientific community regarding the relative ranking of the efficiency of appearance based methods for the face recognition task, let alone regarding their susceptibility to appearance changes induced by various environmental factors. To tackle these open issues, this paper assess the performance of the three dominant appearance based methods: principal component analysis, linear discriminant analysis and independent component analysis, and compares them on equal footing (i.e., with the same preprocessing procedure, with optimized parameters for the best possible performance, etc.) in face verification experiments on the publicly available XM2VTS database. In addition to the comparative analysis on the XM2VTS database, ten degraded versions of the database are also employed in the experiments to evaluate the susceptibility of the appearance based methods on various image degradations which can occur in "real-life" operating conditions. Our experimental results suggest that linear discriminant analysis ensures the most consistent verification rates across the tested databases.
Keywords: Biometrics, face recognition, appearance based methods, image degradations, the XM2VTS database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284481 Performance Evaluation of Faculties of Islamic Azad University of Zahedan Branch Based-On Two-Component DEA
Authors: Ali Payan
Abstract:
The aim of this paper is to evaluate the performance of the faculties of Islamic Azad University of Zahedan Branch based on two-component (teaching and research) decision making units (DMUs) in data envelopment analysis (DEA). Nowadays it is obvious that most of the systems as DMUs do not act as a simple inputoutput structure. Instead, if they have been studied more delicately, they include network structure. University is such a network in which different sections i.e. teaching, research, students and office work as a parallel structure. They consume some inputs of university commonly and some others individually. Then, they produce both dependent and independent outputs. These DMUs are called two-component DMUs with network structure. In this paper, performance of the faculties of Zahedan branch is calculated by using relative efficiency model and also, a formula to compute relative efficiencies teaching and research components based on DEA are offered.
Keywords: Data envelopment analysis, faculties of Islamic Azad University of Zahedan branch, two-component DMUs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663480 Probabilistic Characteristics of older PR Frames in the Mid-America Earthquake Region
Authors: Do-Hwan Kim, Roberto Leon
Abstract:
Probabilistic characteristics of seismic responses of the Partially Restrained connection rotation (PRCR) and panel zone deformation (PZD) installed in older steel moment frames were investigated in accordance with statistical inference in decision-making process. The 4, 6 and 8 story older steel moment frames with clip angle and T-stub connections were designed and analyzed using 2%/50yrs ground motions in four cities of the Mid-America earthquake region. The probability density function and cumulative distribution function of PRCR and PZD were determined by the goodness-of-fit tests based on probabilistic parameters measured from the results of the nonlinear time-history analyses. The obtained probabilistic parameters and distributions can be used to find out what performance level mainly PR connections and panel zones satisfy and how many PR connections and panel zones experience a serious damage under the Mid-America ground motions.Keywords: Mid-America earthquake, Panel zone, PR connection, Probabilistic characteristics, seismic performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412479 Roadmapping as a Collaborative Strategic Decision-Making Process: Shaping Social Dialogue Options for the European Banking Sector
Authors: Christos A. Ioannou, Panagiotis Panagiotopoulos, Lampros Stergioulas
Abstract:
The new status generated by technological advancements and changes in the global economy raises important issues on how communities and organisations need to innovate upon their traditional processes in order to adapt to the challenges of the Knowledge Society. The DialogoS+ European project aims to study the role of and promote social dialogue in the banking sector, strengthen the link between old and new members and make social dialogue at the European level a force for innovation and change, also given the context of the international crisis emerging in 2008- 2009. Under the scope of DialogoS+, this paper describes how the community of Europe-s banking sector trade unions attempted to adapt to the challenges of the Knowledge Society by exploiting the benefits of new channels of communication, learning, knowledge generation and diffusion focusing on the concept of roadmapping. Important dimensions of social dialogue such as collective bargaining and working conditions are addressed.
Keywords: Banking sector, knowledge society, road mapping, social dialogue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131478 Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault
Authors: V. S. Meenakshi, G. Padmavathi
Abstract:
Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.Keywords: Biometric Template Security, Crypto Biometric Systems, Hardening Fuzzy Vault, Min-Entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159477 A Quality Optimization Approach: An Application on Next Generation Networks
Authors: Gülfem I. Alptekin, S. Emre Alptekin
Abstract:
The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.Keywords: cognitive radio networks, game theory, nextgeneration wireless networks, spectrum management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512476 Numerical and Experimental Analyses of a Semi-Active Pendulum Tuned Mass Damper
Authors: H. Juma, F. Al-hujaili, R. Kashani
Abstract:
Modern structures such as floor systems, pedestrian bridges and high-rise buildings have become lighter in mass and more flexible with negligible damping and thus prone to vibration. In this paper, a semi-actively controlled pendulum tuned mass dampers (PTMD) is presented that uses air springs as both the restoring (resilient) and energy dissipating (damping) elements; the tuned mass damper (TMD) uses no passive dampers. The proposed PTMD can readily be fine-tuned and re-tuned, via software, without changing any hardware. Almost all existing semi-active systems have the three elements that passive TMDs have, i.e., inertia, resilient, and dissipative elements with some adjustability built into one or two of these elements. The proposed semi-active air suspended TMD, on the other hand, is made up of only inertia and resilience elements. A notable feature of this TMD is the absence of a physical damping element in its make-up. The required viscous damping is introduced into the TMD using a semi-active control scheme residing in a micro-controller which actuates a high-speed proportional valve regulating the flow of air in and out of the air springs. In addition to introducing damping into the TMD, the semi-active control scheme adjusts the stiffness of the TMD. The focus of this work has been the synthesis and analysis of the control algorithms and strategies to vary the tuning accuracy, introduce damping into air suspended PTMD, and enable the PTMD to self-tune itself. The accelerations of the main structure and PTMD as well as the pressure in the air springs are used as the feedback signals in control strategies. Numerical simulation and experimental evaluation of the proposed tuned damping system are presented in this paper.
Keywords: Tuned mass damper, air spring, semi-active, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656475 Effect of Alkaline Activator, Water, Superplasticiser and Slag Contents on the Compressive Strength and Workability of Slag-Fly Ash Based Geopolymer Mortar Cured under Ambient Temperature
Authors: M. Al-Majidi, A. Lampropoulos, A. Cundy
Abstract:
Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.
Keywords: Fly ash, geopolymer, potassium silicate, room temperature treatment, slag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608474 Efficient Detection Using Sequential Probability Ratio Test in Mobile Cognitive Radio Systems
Authors: Yeon-Jea Cho, Sang-Uk Park, Won-Chul Choi, Dong-Jo Park
Abstract:
This paper proposes a smart design strategy for a sequential detector to reliably detect the primary user-s signal, especially in fast fading environments. We study the computation of the log-likelihood ratio for coping with a fast changing received signal and noise sample variances, which are considered random variables. First, we analyze the detectability of the conventional generalized log-likelihood ratio (GLLR) scheme when considering fast changing statistics of unknown parameters caused by fast fading effects. Secondly, we propose an efficient sensing algorithm for performing the sequential probability ratio test in a robust and efficient manner when the channel statistics are unknown. Finally, the proposed scheme is compared to the conventional method with simulation results with respect to the average number of samples required to reach a detection decision.
Keywords: Cognitive radio, fast fading, sequential detection, spectrum sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743473 Intelligent Agent Approach to the Control of Critical Infrastructure Networks
Authors: James D. Gadze, Niki Pissinou, Kia Makki
Abstract:
In this paper we propose an intelligent agent approach to control the electric power grid at a smaller granularity in order to give it self-healing capabilities. We develop a method using the influence model to transform transmission substations into information processing, analyzing and decision making (intelligent behavior) units. We also develop a wireless communication method to deliver real-time uncorrupted information to an intelligent controller in a power system environment. A combined networking and information theoretic approach is adopted in meeting both the delay and error probability requirements. We use a mobile agent approach in optimizing the achievable information rate vector and in the distribution of rates to users (sensors). We developed the concept and the quantitative tools require in the creation of cooperating semiautonomous subsystems which puts the electric grid on the path towards intelligent and self-healing system.Keywords: Mobile agent, power system operation and control, real time, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673472 A Real Time Expert System for Decision Support in Nuclear Power Plants
Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru
Abstract:
In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.
Keywords: Emergence procedure, expert system, operator support, PWR nuclear power plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137471 Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector
Authors: H. Erbiyik, A. Bal, M. Sirakaya, Ö. Yesildal, E. Yolcu
Abstract:
The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.Keywords: Aluminum sector, analytic hierarchy process, decision making, green logistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498470 Convergence of National Regulations with IFRS for SMEs: Empirical Evidences in the Case of Romania
Authors: Mădălina Maria Gîrbină, Cătălin Nicolae Albu, Nadia Albu
Abstract:
The IFRS for Small and Medium-sized Entities (SMEs) was issued in July 2009 and currently regulators are considering various implementation strategies of this standard. Romania is a member of the European Union since 2007, thus accounting regulations were issued in order to ensure compliance with the European Accounting Directives. As the European Commission rejected recently the mandatory use of IFRS for SMEs, regulatory bodies from the Member States have to decide if the standard will affect or not the accounting practices of SMEs from their countries. Recently IASB invited stakeholders to discuss the revision of IFRS for SMEs. Empirical studies on the differences and similarities between national standards and IFRS for SMEs could inform decision makers on the actual level of convergence in different countries. The purpose of this paper is to provide empirical evidences on the convergence of the Romanian regulations with IFRS for SMEs analyzing the results in the context of the last revisions proposed to the EU Accounting Directives.Keywords: EU Accounting Directives, IFRS for SMEs, national regulations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851469 Acceleration-Based Motion Model for Visual SLAM
Authors: Daohong Yang, Xiang Zhang, Wanting Zhou, Lei Li
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) is a technology that gathers information about the surrounding environment to ascertain its own position and create a map. It is widely used in computer vision, robotics, and various other fields. Many visual SLAM systems, such as OBSLAM3, utilize a constant velocity motion model. The utilization of this model facilitates the determination of the initial pose of the current frame, thereby enhancing the efficiency and precision of feature matching. However, it is often difficult to satisfy the constant velocity motion model in actual situations. This can result in a significant deviation between the obtained initial pose and the true value, leading to errors in nonlinear optimization results. Therefore, this paper proposes a motion model based on acceleration that can be applied to most SLAM systems. To provide a more accurate description of the camera pose acceleration, we separate the pose transformation matrix into its rotation matrix and translation vector components. The rotation matrix is now represented by a rotation vector. We assume that, over a short period, the changes in rotating angular velocity and translation vector remain constant. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of the constant velocity model is analyzed theoretically. Finally, we apply our proposed approach to the ORBSLAM3 system and evaluate two sets of sequences from the TUM datasets. The results show that our proposed method has a more accurate initial pose estimation, resulting in an improvement of 6.61% and 6.46% in the accuracy of the ORBSLAM3 system on the two test sequences, respectively.
Keywords: Error estimation, constant acceleration motion model, pose estimation, visual SLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251468 Criteria Analysis of Residential Location Preferences: An Urban Dwellers’ Perspective
Authors: Arati Siddharth Petkar, Joel E. M. Macwan
Abstract:
Preferences for residential location are of a diverse nature. Primarily they are based on the socio-economic, socio-cultural, socio-demographic characteristics of the household. It also depends on character, and the growth potential of different areas in a city. In the present study, various criteria affecting residential location preferences from the Urban Dwellers’ perspective have been analyzed. The household survey has been conducted in two parts: Existing Buyers’ survey and Future Buyers’ survey. The analysis reveals that workplace location is the most governing criterion in deciding residential location from the majority of the urban dwellers perspective. For analyzing the importance of varied criteria, Analytical Hierarchy Process approach has been explored. The suggested approach will be helpful for urban planners, decision makers and developers, while designating a new residential area or redeveloping an existing one.Keywords: Analytical hierarchy process, household, preferences, residential location preferences, residential land use, urban dwellers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258