Search results for: Adaptive rood pattern search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2336

Search results for: Adaptive rood pattern search

506 Modeling of Single Bay Precast Residential House Using Ruaumoko 2D Program

Authors: N. H. Hamid, N. M. Mohamed, S. A. Anuar

Abstract:

Precast residential houses are normally constructed in Malaysia using precast shear-key wall panel and this panel is designed using BS8110 where there is no provision for earthquake. However, the safety of this house under moderate and strong earthquake is still questionable. Consequently, the full-scale of residential house are designed, constructed, tested and analyzed under in-plane lateral quasi-static cyclic loading. Hysteresis loops are plotted based on the experimental work and compared with modeling of hysteresis loops using HYSTERES in RUAUMOKO 2D program. Modified Takeda hysteresis model is chosen to behave a similar pattern with experimental work. This program will display the earthquake excitations, spectral displacements, pseudo spectral acceleration, mode shape and deformation of the structure. It can be concluded that this building is suffering severe cracks and damage under moderate and severe earthquake.

Keywords: Deformation shape, hysteresis loops, precast shear-key, spectral displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
505 Relation between Organizational Climate and Personnel Performance Assessment in a Tourist Service Company

Authors: Daniel A. Montoya, Marta L. Tostes

Abstract:

This investigation aims at analyzing and determining the relation between two very important variables in the human resource management: The organizational climate and the performance assessment. This study aims at contributing with knowledge in the search of the relation between the mentioned variables because the literature still does not provide solid evidence to this respect and the cases revised are incipient to reach conclusions enabling a typology about this relation.To this regard, a correlational and cross-sectional perspective was adopted in which quantitative and qualitative techniques were chosen with the total of the workers of the tourist service company PTS Peru. In order to measure the organizational climate, the OCQ (Organization Climate Questionnaire) from was used; it has 50 items and measures 9 dimensions of the Organizational Climate. Also, to assess performance, a questionnaire with 21 items and 6 dimensions was designed. As a means of assessment, a focus group was prepared and was applied to a worker in every area of the company. Additionally, interviews to human resources experts were conducted. The results of the investigation show a clear relation between the organizational climate and the personnel performance assessment as well as a relation between the nine dimensions of the organizational climate and the work performance in general and with some of its dimensions.

Keywords: Job performance, human resource management, organization climate, performance assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
504 Developing Proof Demonstration Skills in Teaching Mathematics in the Secondary School

Authors: M. Rodionov, Z. Dedovets

Abstract:

The article describes the theoretical concept of teaching secondary school students proof demonstration skills in mathematics. It describes in detail different levels of mastery of the concept of proof-which correspond to Piaget’s idea of there being three distinct and progressively more complex stages in the development of human reflection. Lessons for each level contain a specific combination of the visual-figurative components and deductive reasoning. It is vital at the transition point between levels to carefully and rigorously recalibrate teaching to reflect the development of more complex reflective understanding. This can apply even within the same age range, since students will develop at different speeds and to different potential. The authors argue that this requires an aware and adaptive approach to lessons to reflect this complexity and variation. The authors also contend that effective teaching which enables students to properly understand the implementation of proof arguments must develop specific competences. These are: understanding of the importance of completeness and generality in making a valid argument; being task focused; having an internalised locus of control and being flexible in approach and evaluation. These criteria must be correlated with the systematic application of corresponding methodologies which are best likely to achieve success. The particular pedagogical decisions which are made to deliver this objective are illustrated by concrete examples from the existing secondary school mathematics courses. The proposed theoretical concept formed the basis of the development of methodological materials which have been tested in 47 secondary schools.

Keywords: Education, teaching of mathematics, proof, deductive reasoning, secondary school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
503 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: Convergence, iteration, line search, running time, steepest descent, unconstrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3158
502 Consumer Online Shopping Behavior: The Effect of Internet Marketing Environment, Product Characteristics, Familiarity and Confidence, and Promotional Offer

Authors: Norazah Mohd Suki, Norbayah Mohd Suki

Abstract:

Online shopping enables consumers to search for information and purchase products or services through direct interaction with online store. This study aims to examine the effect of Internet marketing environment, product characteristics, familiarity and confidence, and promotional offers on consumer online shopping behavior. 200 questionnaires were distributed to the respondents, who are students and staff at a public university in the Federal Territory of Labuan, Malaysia, following simple random sampling as a means of data collection. Multiple regression analysis was used as a statistical measure to determine the strength of the relationship between one dependent variable and a series of other independent variables. Results revealed that familiarity and confidence was found to greatly influence consumer online shopping behavior followed by promotional offers. A clear understanding of consumer online shopping behavior can help marketing managers predict the online shopping rate and evaluate the future growth of online commerce.

Keywords: Internet Marketing Environment, Product Characteristics, Multiple Regression Analysis, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12067
501 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set

Authors: M. Santhalakshmi, P Suganthi

Abstract:

Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.

Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
500 Application of Kansei Engineering and Association Rules Mining in Product Design

Authors: Pitaktiratham J., Sinlan T., Anuntavoranich P., Sinthupinyo S.

Abstract:

The Kansei engineering is a technology which converts human feelings into quantitative terms and helps designers develop new products that meet customers- expectation. Standard Kansei engineering procedure involves finding relationships between human feelings and design elements of which many researchers have found forward and backward relationship through various soft computing techniques. In this paper, we proposed the framework of Kansei engineering linking relationship not only between human feelings and design elements, but also the whole part of product, by constructing association rules. In this experiment, we obtain input from emotion score that subjects rate when they see the whole part of the product by applying semantic differentials. Then, association rules are constructed to discover the combination of design element which affects the human feeling. The results of our experiment suggest the pattern of relationship of design elements according to human feelings which can be derived from the whole part of product.

Keywords: Association Rules Mining, Kansei Engineering, Product Design, Semantic Differentials

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
499 Immunohistochemical Expression of β-catenin and Epidermal Growth Factor Receptor in Adamantinomatous Craniopharyngioma

Authors: Ghada Esheba, Fatimah Alturkistani, Arwa Obaid, Ahdab Bashehab, Moayad Alturkistani

Abstract:

Introduction: Craniopharyngiomas (CPs) are rare epithelial tumors located mainly in the sellar/parasellar region. CPs have been classified histopathologically, genetically, clinically and prognostically into two distinctive subtypes: adamantinomatous and papillary variants. Aim: To examine the pattern of expression of both the β-catenin and epidermal growth factor receptor (EGFR) in surgically resected samples of adamantinomatous CP, and to asses for the possibility of using anti-EGFR in the management of ACP patients. Materials and methods: β-catenin and EGFR immunostaining was performed on paraffin-embedded tissue sections of 18 ACP cases. Result: 17 out of 18 cases (94%) of ACP exhibited strong nuclear/cytoplasmic expression of β-catenin, 15 (83%) of APC cases were positive for EGFR. Conclusion: Nuclear accumulation of β-catenin is a diagnostic hallmark of ACP. EGFR positivity in most cases of ACP could qualify the use of anti-EGFR therapy. 

Keywords: Craniopharyngioma, adamantinomatous, papillary, epidermal growth factor receptor, B-catenin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
498 Estimating Shortest Circuit Path Length Complexity

Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake

Abstract:

When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.

Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
497 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models

Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed

Abstract:

The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE.  Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.

Keywords: Simulation model, misalignment, cogs missing and vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
496 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: Aerodynamics compressible flow, gas dynamics, hydraulics, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
495 Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems

Authors: Nhon Do, Hien Nguyen

Abstract:

Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.

Keywords: educational software, artificial intelligence, knowledge base system, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
494 The Current Situation of Ang Thong Province’s Court Doll Distribution

Authors: P. Waiyawuththanapoom

Abstract:

This research is objected to study the pattern and channel of distribution of Ang Thong’s court doll OTOP product and try to develop the quality of distribution of the court doll product. The population of this research is 50 court doll manufacturers of Ang Thong’s court doll. The data and information was collected by using the questionnaire and use percentage, mean and standard deviation as an analysis tools. The distribution channel of Ang Thong’s court doll can be separated into 3 channels which are direct distribution from the manufacturer, via the middleman and via the co-operated manufacturing group. In the direct distribution from the manufacturer channel, it was found that the manufacturer is given the highest rate of importance to how they keep the inventory. In the distribution via the middleman channel, it was found that the manufacturer is given the highest rate of importance to the distribution efficiency. But in the distribution via the co-operated manufacturing group, it was found that the manufacturer is given the highest rate of importance to the public relationship.

Keywords: Distribution, Court Doll, Ang Thong Province.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
493 Fast Factored DCT-LMS Speech Enhancement for Performance Enhancement of Digital Hearing Aid

Authors: Sunitha. S.L., V. Udayashankara

Abstract:

Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Cosine Transform Power Normalized Least Mean Square algorithm to improve the SNR and to reduce the convergence rate of the LMS for Sensory neural loss patients. Since it requires only real arithmetic, it establishes the faster convergence rate as compare to time domain LMS and also this transformation improves the eigenvalue distribution of the input autocorrelation matrix of the LMS filter. The DCT has good ortho-normal, separable, and energy compaction property. Although the DCT does not separate frequencies, it is a powerful signal decorrelator. It is a real valued function and thus can be effectively used in real-time operation. The advantages of DCT-LMS as compared to standard LMS algorithm are shown via SNR and eigenvalue ratio computations. . Exploiting the symmetry of the basis functions, the DCT transform matrix [AN] can be factored into a series of ±1 butterflies and rotation angles. This factorization results in one of the fastest DCT implementation. There are different ways to obtain factorizations. This work uses the fast factored DCT algorithm developed by Chen and company. The computer simulations results show superior convergence characteristics of the proposed algorithm by improving the SNR at least 10 dB for input SNR less than and equal to 0 dB, faster convergence speed and better time and frequency characteristics.

Keywords: Hearing Impairment, DCT Adaptive filter, Sensorineural loss patients, Convergence rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
492 A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation

Authors: D. R. Delgado Sobrino, P. Košťál, J. Oravcová

Abstract:

Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.

Keywords: Flexible/Intelligent Manufacturing System/Cell (F/IMS/C), material flow/design/configuration (MF/D/C), workstation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
491 A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix

Authors: K. Krishna Veni, S. Raja Balachandar

Abstract:

This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems.

Keywords: 0-1 Multi constrained Knapsack problem, heuristic, computational complexity, NP-Hard problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
490 Characteristics of E-waste Recycling Systems in Japan and China

Authors: Bi Bo, Kayoko Yamamoto

Abstract:

This study aims to identify processes, current situations, and issues of recycling systems for four home appliances, namely, air conditioners, television receivers, refrigerators, and washing machines, among e-wastes in China and Japan for understanding and comparison of their characteristics. In accordance with results of a literature search, review of information disclosed online, and questionnaire survey conducted, conclusions of the study boil down to: (1)The results show that in Japan most of the home appliances mentioned above have been collected through home appliance recycling tickets, resulting in an issue of “requiring some effort" in treatment and recycling stages, and most plants have contracted out their e-waste recycling. (2)It is found out that advantages of the recycling system in Japan include easiness to monitor concrete data and thorough environmental friendliness ensured while its disadvantages include illegal dumping and export. It becomes apparent that advantages of the recycling system in China include a high reuse rate, low treatment cost, and fewer illegal dumping while its disadvantages include less safe reused products, environmental pollution caused by e-waste treatment, illegal import, and difficulty in obtaining data.

Keywords: E-waste, Recycling Systems, Home Appliances, Japan and China.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4830
489 Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM

Authors: Omer Rashid, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis

Abstract:

It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.

Keywords: Feature Extraction, Posture Recognition, Pattern Recognition, Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
488 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: Big data, k-NN, machine learning, traffic speed prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
487 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
486 A Hybrid Feature Selection by Resampling, Chi squared and Consistency Evaluation Techniques

Authors: Amir-Massoud Bidgoli, Mehdi Naseri Parsa

Abstract:

In this paper a combined feature selection method is proposed which takes advantages of sample domain filtering, resampling and feature subset evaluation methods to reduce dimensions of huge datasets and select reliable features. This method utilizes both feature space and sample domain to improve the process of feature selection and uses a combination of Chi squared with Consistency attribute evaluation methods to seek reliable features. This method consists of two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure to find the optimal feature space by applying Chi squared, Consistency subset evaluation methods and genetic search. Experiments on various sized datasets from UCI Repository of Machine Learning databases show that the performance of five classifiers (Naïve Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) improves simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods.

Keywords: feature selection, resampling, reliable features, Consistency Subset Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
485 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack

Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza

Abstract:

In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.

Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
484 Residue and Ecological Risk Assessment of Polybrominated Diphenyl Ethers (PBDEs) in Sediment from CauBay River, Vietnam

Authors: Toan Vu Duc, Son Ha Viet

Abstract:

This research presents the first comprehensive survey of congener profiles (7 indicator congeners) of polybrominated diphenyl ethers (PBDEs) in sediment samples covering ten sites in CauBay River, Vietnam. Chemical analyses were carried out in gas chromatography–mass spectrometry (GC–MS) for tri- to hepta- brominated congeners. Results pointed out a non-homogenous contamination of the sediment with ∑7 PBDE values ranging from 8.93 to 25.64ng g−1, reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47 > 99 > 100 > 154, similar to the distribution pattern worldwide. PBDEs had rare risks in the sediment of studied area.  However, due to the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority. 

Keywords: Residue, Risk assessment, PBDEs, Sediment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
483 More Realistic Model for Simulating Min Protein Dynamics: Lattice Boltzmann Method Incorporating the Role of Nucleoids

Authors: J.Yojina, W. Ngamsaad, N. Nuttavut, D.Triampo, Y. Lenbury, W. Triampo, P. Kanthang, S.Sriyab

Abstract:

The dynamics of Min proteins plays a center role in accurate cell division. Although the nucleoids may presumably play an important role in prokaryotic cell division, there is a lack of models to account for its participation. In this work, we apply the lattice Boltzmann method to investigate protein oscillation based on a mesoscopic model that takes into account the nucleoid-s role. We found that our numerical results are in reasonably good agreement with the previous experimental results On comparing with the other computational models without the presence of nucleoids, the highlight of our finding is that the local densities of MinD and MinE on the cytoplasmic membrane increases, especially along the cell width, when the size of the obstacle increases, leading to a more distinct cap-like structure at the poles. This feature indicated the realistic pattern and reflected the combination of Min protein dynamics and nucleoid-s role.

Keywords: lattice Boltzmann method, cell division, Minproteins oscillation, nucleoid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
482 Applying Case-Based Reasoning in Supporting Strategy Decisions

Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami

Abstract:

Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.

Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
481 Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation

Authors: S. Logeswari, K. Premalatha

Abstract:

Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term based searches. Algorithms for semantic searches are implemented based on the relations exist between the words of the documents. Ontologies are used as domain knowledge for identifying the semantic relations as well as to structure the data for effective information retrieval. Annotation of data with concepts of ontology is one of the wide-ranging practices for clustering the documents. In this paper, indexing based on concept and annotation are proposed for clustering the biomedical documents. Fuzzy c-means (FCM) clustering algorithm is used to cluster the documents. The performances of the proposed methods are analyzed with traditional term based clustering for PubMed articles in five different diseases communities. The experimental results show that the proposed methods outperform the term based fuzzy clustering.

Keywords: MeSH Ontology, Concept Indexing, Annotation, semantic relations, Fuzzy c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
480 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification

Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine

Abstract:

Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
479 Vitamin C Status and Nitric Oxide in Buffalo Ovarian Follicular Fluid in Relation to Seasonal Heat Stress and Phase of Estrous Cycle

Authors: H. F. Hozyen, A. M. Abo-El Maaty

Abstract:

Heat stress is a recognized problem causing huge economic losses to the buffalo breeders as well as dairy industry. The aim of the present work was to study the pattern of vitamin C and nitric oxide in follicular fluid of buffalo during different seasons of the year considering phase of estrous cycle. This study was conducted on 208 cyclic buffaloes slaughtered at Al-Qaliobia governorate, Egypt, over one year. The obtained results revealed that vitamin C in follicular fluid was significantly lower in summer than winter and spring. On the other hand, nitric oxide (NO) was significantly higher in summer and autumn than winter and spring. Both vitamin C and NO did not differ significantly between follicular and luteal phases. In conclusion, the present study revealed that alterations in concentrations of follicular fluid vitamin C and NO that occur in summer could be related to low summer fertility in buffalo.

Keywords: Buffalo, follicular fluid, vitamin C, NO and heat stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
478 Optimizing Spatial Trend Detection By Artificial Immune Systems

Authors: M. Derakhshanfar, B. Minaei-Bidgoli

Abstract:

Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.

Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
477 How Efficiency of Password Attack Based on a Keyboard

Authors: Hsien-cheng Chou, Fei-pei Lai, Hung-chang Lee

Abstract:

At present, dictionary attack has been the basic tool for recovering key passwords. In order to avoid dictionary attack, users purposely choose another character strings as passwords. According to statistics, about 14% of users choose keys on a keyboard (Kkey, for short) as passwords. This paper develops a framework system to attack the password chosen from Kkeys and analyzes its efficiency. Within this system, we build up keyboard rules using the adjacent and parallel relationship among Kkeys and then use these Kkey rules to generate password databases by depth-first search method. According to the experiment results, we find the key space of databases derived from these Kkey rules that could be far smaller than the password databases generated within brute-force attack, thus effectively narrowing down the scope of attack research. Taking one general Kkey rule, the combinations in all printable characters (94 types) with Kkey adjacent and parallel relationship, as an example, the derived key space is about 240 smaller than those in brute-force attack. In addition, we demonstrate the method's practicality and value by successfully cracking the access password to UNIX and PC using the password databases created

Keywords: Brute-force attack, dictionary attack, depth-firstsearch, password attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3473