Search results for: thermal stress.
490 Formation and Evaluation of Lahar/HDPE Hybrid Composite as a Structural Material for Household Biogas Digester
Authors: Lady Marianne E. Polinga, Candy C. Mercado, Camilo A. Polinga
Abstract:
This study was an investigation on the suitability of Lahar/HDPE composite as a primary material for low-cost smallscale biogas digesters. While sources of raw materials for biogas are abundant in the Philippines, cost of the technology has made the widespread utilization of this resource an indefinite proposition. Aside from capital economics, another problem arises with space requirements of current digester designs. These problems may be simultaneously addressed by fabricating digesters on a smaller, household scale to reach a wider market, and to use materials that may accommodate optimization of overall design and fabrication cost without sacrificing operational efficiency. This study involved actual fabrication of the Lahar/HDPE composite at varying composition and geometry, subsequent mechanical and thermal characterization, and implementation of Statistical Analysis to find intrinsic relationships between variables. From the results, Lahar/HDPE composite was found to be feasible for use as digester material from both mechanical and economic standpoints.
Keywords: Biogas digester, Composite, High density polyethylene, Lahar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252489 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171488 Biplot Analysis for Evaluation of Tolerance in Some Bean (Phaseolus vulgaris L.) Genotypes to Bean Common Mosaic Virus (BCMV)
Authors: S. Ghasemi, M. M. Kamelmanesh, A. Namayandeh, R. Biabanikhankahdani
Abstract:
The common bean is the most important grain legume for direct human consumption in the world and BCMV is one of the world's most serious bean diseases that can reduce yield and quality of harvested product. To determine the best tolerance index to BCMV and recognize tolerant genotypes, 2 experiments were conducted in field conditions. Twenty five common bean genotypes were sown in 2 separate RCB design with 3 replications under contamination and non-contamination conditions. On the basis of the results of indices correlations GMP, MP and HARM were determined as the most suitable tolerance indices. The results of principle components analysis indicated 2 first components totally explained 98.52% of variations among data. The first and second components were named potential yield and stress susceptible respectively. Based on the results of BCMV tolerance indices assessment and biplot analysis WA8563-4, WA8563-2 and Cardinal were the genotypes that exhibited potential seed yield under contamination and noncontamination conditions.
Keywords: Phaseolus vulgaris, BCMV, principle components analysis, bi-plot analysis, tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358487 Development of Impressive Tensile Properties of Hybrid Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Refractory High Entropy Alloy
Authors: M. Veeresham
Abstract:
The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.
Keywords: Refractory high entropy alloys, hybrid-rolling, recrystallization, microstructure, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679486 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model
Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi
Abstract:
Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.
Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2826485 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province
Authors: Kourosh Nazarian
Abstract:
Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.Keywords: Stress, creep, surface runoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717484 Investigation of Syngas Production from Waste Gas and Ratio Adjustment using a Fischer-Tropsch Synthesis Reactor
Authors: E.Darzi
Abstract:
In this study, a reformer model simulation to use refinery (Farashband refinery, Iran) waste natural gas. In the petroleum and allied sectors where natural gas is being encountered (in form of associated gas) without prior preparation for its positive use, its combustion (which takes place in flares, an equipment through which they are being disposed) has become a great problem because of its associated environmental problems in form of gaseous emission. The proposed model is used to product syngas from waste natural gas. A detailed steady model described by a set of ordinary differential and algebraic equations was developed to predict the behavior of the overall process. The proposed steady reactor model was validated against process data of a reformer synthesis plant recorded and a good agreement was achieved. H2/CO ratio has important effect on Fischer- Tropsch synthesis reactor product and we try to achieve this parameter with best designing reformer reactor. We study different kind of reformer reactors and then select auto thermal reforming process of natural gas in a fixed bed reformer that adjustment H2/CO ratio with CO2 and H2O injection. Finally a strategy was proposed for prevention of extra natural gas to atmosphere.Keywords: Fischer-Tropsch, injection, reformer, syngas, waste natural gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732483 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM
Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen
Abstract:
Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.Keywords: Fatigue damage, FORM, monopile, monte carlo simulation, reliability, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189482 Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions
Authors: Madhu Sudan, G. N. Tiwari
Abstract:
In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as “SODHA BERS COMPLEX (SBC)” at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window.Keywords: Clear sky, Daylight Illuminance Ratio, Energy saving, Wall window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502481 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect
Authors: Kai-Long Hsiao
Abstract:
A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584480 Physical and Mechanical Phenomena Associated with Rock Failure in Brazilian Disc Specimens
Authors: Hamid Reza Nejati, Amin Nazerigivi, Ahmad Reza Sayadi
Abstract:
Failure mechanism of rocks is one of the fundamental aspects to study rock engineering stability. Rock is a material that contains flaws, initial damage, micro-cracks, etc. Failure of rock structure is largely due to tensile stress and was influenced by various parameters. In the present study, the effect of brittleness and loading rate on the physical and mechanical phenomena produced in rock during loading sequences is considered. For this purpose, Acoustic Emission (AE) technique is used to monitor fracturing process of three rock types (onyx marble, sandstone and soft limestone) with different brittleness and sandstone samples under different loading rate. The results of experimental tests revealed that brittleness and loading rate have a significant effect on the mode and number of induced fracture in rocks. An increase in rock brittleness increases the frequency of induced cracks, and the number of tensile fracture decreases when loading rate increases.Keywords: Brittleness, loading rate, acoustic emission, tensile fracture, shear fracture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420479 Piezoelectric Polarization Effect on Debye Frequency and Temperature in Nitride Wurtzites
Authors: Bijay Kumar Sahoo, Ashok Kumar Srivastav
Abstract:
We have investigated the effect of piezoelectric (PZ) polarization property in binary as well as in ternary wurtzite nitrides. It is found that with the presence of PZ polarization property, the phonon group velocity is modified. The change in phonon group velocity due to PZ polarization effect directly depends on piezoelectric tensor value. Using different piezoelectric tensor values recommended by different workers in the literature, percent change in group velocities of phonons has been estimated. The Debye temperatures and frequencies of binary nitrides GaN, AlN and InN are also calculated using the modified group velocities. For ternary nitrides AlxGa(1-x)N, InxGa(1-x)N and InxAl(1-x)N, the phonon group velocities have been calculated as a functions of composition. A small positive bowing is observed in phonon group velocities of ternary alloys. Percent variations in phonon group velocities are also calculated for a straightforward comparison among ternary nitrides. The results are expected to show a change in phonon relaxation rates and thermal conductivity of III-nitrides when piezoelectric polarization property is taken into consideration.Keywords: Wirtzite nitrides, piezoelectric polarization, Phonon group velocity, Debye frequency and Debye temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981478 Characterization and Predictors of Paranoid Ideation in Youths
Authors: M. Sousa, C. Barreto Carvalho, C. da Motta, J. Cabral, V. Pereira, S. Nunes Caldeira, E. Peixoto
Abstract:
Paranoid ideation is a common thought process that constitutes a defense against perceived social threats. The current study aimed at the characterization of paranoid ideation in youths and to explore the possible predictors involved in the development of paranoid ideations. Paranoid ideation, shame, submission, early childhood memories and current depressive, anxious and stress symptomatology were assessed in a sample of 1516 Portuguese youths. Higher frequencies of paranoid ideation were observed, particularly in females and youths from lower socioeconomic status. The main predictors identified relates to submissive behaviors and adverse childhood experiences, and especially to shame feelings. The current study emphasizes that the these predictors are similar to findings in adults and clinical populations, and future implications to research and clinical practice aiming at paranoid ideations are discussed, as well as the pertinence of the study of mediating factors that allow a wider understanding of this thought process in younger populations and the prevention of psychopathology in adulthood.Keywords: Adolescence, early memories, paranoid ideation, parenting styles, shame, submissiveness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549477 Mechanistic Study of Composite Pavement Behavior in Heavy Duty Area
Authors: Makara Rith, Young Kyu Kim, Seung Woo Lee
Abstract:
In heavy duty areas, asphalt pavement constructed as entrance roadway may expose distresses such as cracking and rutting during service life. To mitigate these problems, composite pavement with a roller-compacted concrete base may be a good alternative; however, it should be initially investigated. Structural performances such as fatigue cracking and rut depth may be changed due to variation of some design factors. Therefore, this study focuses on the variation effect of material modulus, layer thickness and loading on composite pavement performances. Stress and strain at the critical location are determined and used as the input of transfer function for corresponding distresses to evaluate the pavement performance. Also, composite pavement satisfying the design criteria may be selected as a design section for heavy duty areas. Consequently, this investigation indicates that composite pavement has the ability to eliminate fatigue cracking in asphalt surfaces and significantly reduce rut depth. In addition, a thick or strong rigid base can significantly reduce rut depth and prolong fatigue life of this layer.
Keywords: Composite pavement, ports, cracking, rutting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694476 Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks
Authors: Manay E., Sahin B., Yilmaz M., Gelis K.
Abstract:
In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.
Keywords: Microchannel Heat Sink, Nanofluid, Heat transfer enhancement, pressure drop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577475 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: Dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001474 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments
Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas
Abstract:
This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas.
The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behavior of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.
Keywords: DEMO, EHCL, ITER, LLCB TBM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3214473 Migration Loneliness and Family Links: A Case Narrative
Authors: R.Narchal
Abstract:
Culture and family structure provide a sense security. Further, the chrono, macro and micro contexts of development influence developmental transitions and timetable particularly owing to variations in the macrosystem associated with non normative life events like migration. Migration threatens family links, security and attachment bonds. Rising migratory trends have prompted an increased interest in migration consequences on familial bonds, developmental autonomy, socialization process, and sense of security. This paper takes a narrative approach and applies the attachment paradigm from a lifespan perspective, to examine the settlement experiences of an India-born migrant student in Sydney, Australia. It focuses on her quest to preserve family ties; her remote secure base; her continual struggle to balance dependency and autonomy, a major developmental milestone. As positional parental power is culturally more potent in the Indian society, the paper therefore raises some important concerns related to cultural expectations, adaptation, acculturative stress and sense of security.Keywords: Attachment, family security, migration & loneliness, narrative, remote secure base
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502472 Numerical Simulation of Conjugated Heat Transfer Characteristics of Laminar Air Flows in Parallel-Plate Dimpled Channels
Authors: Hossein Shokouhmand , Mohammad A. Esmaeili, Koohyar Vahidkhah
Abstract:
This paper presents a numerical study on surface heat transfer characteristics of laminar air flows in parallel-plate dimpled channels. The two-dimensional numerical model is provided by commercial code FLUENT and the results are obtained for channels with symmetrically opposing hemi-cylindrical cavities onto both walls for Reynolds number ranging from 1000 to 2500. The influence of variations in relative depth of dimples (the ratio of cavity depth to the cavity curvature diameter), the number of them and the thermophysical properties of channel walls on heat transfer enhancement is studied. The results are evident for existence of an optimum value for the relative depth of dimples in which the largest wall heat flux and average Nusselt number can be achieved. In addition, the results of conjugation simulation indicate that the overall influence of the ratio of wall thermal conductivity to the one of the fluid on heat transfer rate is not much significant and can be ignored.Keywords: cavity, conjugation, heat transfer, laminar air flow, Numerical, parallel-plate channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954471 Mathematical Modeling of Drip Emitter Discharge of Trapezoidal Labyrinth Channel
Authors: N. Philipova
Abstract:
The influence of the geometric parameters of trapezoidal labyrinth channel on the emitter discharge is investigated in this work. The impact of the dentate angle, the dentate spacing, and the dentate height are studied among the geometric parameters of the labyrinth channel. Numerical simulations of the water flow movement are performed according to central cubic composite design using Commercial codes GAMBIT and FLUENT. Inlet pressure of the dripper is set up to be 1 bar. The objective of this paper is to derive a mathematical model of the emitter discharge depending on the dentate angle, the dentate spacing, the dentate height of the labyrinth channel. As a result, the obtained mathematical model is a second-order polynomial reporting 2-way interactions among the geometric parameters. The dentate spacing has the most important and positive influence on the emitter discharge, followed by the simultaneous impact of the dentate spacing and the dentate height. The dentate angle in the observed interval has no significant effect on the emitter discharge. The obtained model can be used as a basis for a future emitter design.
Keywords: Drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938470 Combustion and Emission of a Compression Ignition Engine Fueled with Diesel and Hydrogen-Methane Mixture
Authors: J. H. Zhou, C. S. Cheung, C. W. Leung
Abstract:
The present study conducted experimental investigation on combustion and emission characteristics of compression ignition engine using diesel as pilot fuel and methane, hydrogen and methane/hydrogen mixture as gaseous fuels at 1800 rev min-1. The effect of gaseous fuel on peak cylinder pressure and heat release is modest at low to medium loads. At high load, the high combustion temperature and high quantity of pilot fuel contribute to better combustion efficiency for all kinds of gaseous fuels and increases the peak cylinder pressure. Enrichment of hydrogen in methane gradually increases the peak cylinder pressure. The brake thermal efficiency increases with higher hydrogen fraction at lower loads. Hydrogen addition in methane contributed to a proportional reduction of CO/CO2/HC emission without penalty of NOx. For particulate emission, methane and hydrogen, could both suppress the particle emission. 30% hydrogen fraction in methane is observed to be best in reducing the particulate emission.
Keywords: Combustion characteristics, diesel engine, emissions, methane/hydrogen mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3692469 Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions
Authors: Tatiana V. Raudina, Sergey P. Kulizhskiy
Abstract:
A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.
Keywords: Gleyed and nongleyed soils, permafrost, soil cryogenesis (pedocryogenesis), soil-forming macroprocesses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062468 Crystalline Graphene Nanoribbons with Atomically Smooth Edges via a Novel Physico- Chemical Route
Authors: A. Morelos-Gómez, S. M. Vega-Díaz, V. J. González, F. Tristán-López, R. Cruz-Silva , K. Fujisawa, H. Muramatsu , T. Hayashi , Xi Mi , Yunfeng Shi , H. Sakamoto , F. Khoerunnisa , K. Kaneko , B. G. Sumpter , Y.A. Kim , V. Meunier, M. Endo , E. Muñoz-Sandoval, M. Terrones
Abstract:
A novel physico-chemical route to produce few layer graphene nanoribbons with atomically smooth edges is reported, via acid treatment (H2SO4:HNO3) followed by characteristic thermal shock processes involving extremely cold substances. Samples were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. This method demonstrates the importance of having the nanotubes open ended for an efficient uniform unzipping along the nanotube axis. The average dimensions of these nanoribbons are approximately ca. 210 nm wide and consist of few layers, as observed by transmission electron microscopy. The produced nanoribbons exhibit different chiralities, as observed by high resolution transmission electron microscopy. This method is able to provide graphene nanoribbons with atomically smooth edges which could be used in various applications including sensors, gas adsorption materials, composite fillers, among others.
Keywords: Carbon nanoribbons, carbon nanotubes, unzipping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812467 Anthocyanin Complex: Characterization and Cytotoxicity Studies
Authors: Sucharat Limsitthichaikoon, Kedsarin Saodaeng, Aroonsri Priprem, Teerasak Damrongrungruang
Abstract:
Complexation of anthocyanins to mimic natural copigmentation process was investigated. Cyanidin-rich extracts from Zea mays L. ceritina Kulesh. and delphinidin-rich extracts from Clitoria ternatea L. were used to form 4 anthocyanin complexes, AC1, AC2, AC3 and AC4, in the presence of several polyphenols and a trace metal. Characterizations of the ACs were conducted by UV, FTIR, DSC/TGA and morphological observations. Bathochromic shifts of the UV spectra of 4 formulas of ACs were observed at peak wavelengths of about 510-620 nm by 10 nm suggesting complex formation. FTIR spectra of the ACs indicate shifts of peaks from 1,733 cm-1 to 1,696 cm-1 indicating interactions and a decrease in the peak areas within the wavenumber of 3,400-3,500 cm-1 indicating changes in hydrogen bonding. Thermal analysis of all of the ACs suggests increases in melting temperature after complexation. AC with the highest melting temperature was morphologically observed by SEM and TEM to be crystal-like particles within a range of 50 to 200 nm. Particle size analysis of the AC by laser diffraction gave a range of 50-600 nm, indicating aggregation. This AC was shown to have no cytotoxic effect on cultured HGEPp0.5 and HGF (all p> 0.05) by MTT. Therefore, complexation of anthocyanins was simple and self-assembly process, potentially resulting in nanosized particles of anthocyanin complex.
Keywords: Anthocyanins, complexation, purple corn cops, butterfly pea, physicochemical characteristics, cytotoxicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3657466 Operational Risk – Scenario Analysis
Authors: Milan Rippel, Petr Teply
Abstract:
This paper focuses on operational risk measurement techniques and on economic capital estimation methods. A data sample of operational losses provided by an anonymous Central European bank is analyzed using several approaches. Loss Distribution Approach and scenario analysis method are considered. Custom plausible loss events defined in a particular scenario are merged with the original data sample and their impact on capital estimates and on the financial institution is evaluated. Two main questions are assessed – What is the most appropriate statistical method to measure and model operational loss data distribution? and What is the impact of hypothetical plausible events on the financial institution? The g&h distribution was evaluated to be the most suitable one for operational risk modeling. The method based on the combination of historical loss events modeling and scenario analysis provides reasonable capital estimates and allows for the measurement of the impact of extreme events on banking operations.Keywords: operational risk, scenario analysis, economic capital, loss distribution approach, extreme value theory, stress testing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429465 Prooxidant Effect of the Crude Ethanolic Leaf Extract of Ficus odorata Blanco Merr. in vitro: It’s Medical Significance
Authors: Librado A. Santiago, Anna Beatriz R. Mayor
Abstract:
Alongside with antioxidant, pro-oxidant activity is also observed in phytochemical compounds. In the study, Ficus odorata, an endemic medicinal plant in the Philippines, was screened for the potential medical application of its pro-oxidant activity.
Phytochemical screening revealed the presence of terpenes, glycosides and phenolic acids. The crude extract was found to contain low gallic acid and quercetin equivalence. The TLC chromatogram of the crude extract showed that none of the 11 spots obtained has antioxidant activity nor correspond to gallic acid and quercetin standards. Experiments showed that the crude extract has stimulatory activity towards DPPH radicals, hydrogen peroxide, hydroxyl radicals, superoxide anions and nitric oxide. Moreover, the extract exhibited a low ferric reducing power.
The prooxidant activity was evident in the crude ethanolic leaf extract of F. odorata, which may provide a better understanding of the plant’s pharmacological importance in the prevention of diseases.
Keywords: Ficus odorata Blanco, Free Radicals, Oxidative Stress, Prooxidant, Antioxidant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4011464 Sweet Corn Water Productivity under Several Deficit Irrigation Regimes Applied during Vegetative Growth Stage using Treated Wastewater as Water Irrigation Source
Authors: Hirich A., Rami A., Laajaj K., Choukr-Allah R., Jacobsen S-E., El youssfi L., El Omari H.
Abstract:
Yield and Crop Water Productivity are crucial issues in sustainable agriculture, especially in high-demand resource crops such as sweet corn. This study was conducted to investigate agronomic responses such as plant growth, yield and soil parameters (EC and Nitrate accumulation) to several deficit irrigation treatments (100, 75, 50, 25 and 0% of ETm) applied during vegetative growth stage, rainfed treatment was also tested. The finding of this research indicates that under deficit irrigation during vegetative growth stage applying 75% of ETm lead to increasing of 19.4% in terms of fresh ear yield, 9.4% in terms of dry grain yield, 10.5% in terms of number of ears per plant, 11.5% for the 1000 grains weight and 19% in terms of crop water productivity compared with fully irrigated treatment. While those parameters in addition to root, shoot and plant height has been affected by deficit irrigation during vegetative growth stage when increasing water stress degree more than 50% of ETm.Keywords: Leaf area, yield, crop water productivity, water saving
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284463 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection
Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf
Abstract:
Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803462 Effect of Na2O Content on Performance of Fly ash Geopolymers at Elevated Temperature
Authors: Kalyan Kr. Mandal, Suresh Thokchom, Mithun Roy
Abstract:
The present paper reports results of an experimental program conducted to study performance of fly ash based geopolymer pastes at elevated temperature. Three series of geopolymer pastes differing in Na2O content (8.5%, 10% and 11.5%) were manufactured by activating low calcium fly ash with a mixture of sodium hydroxide and sodium silicate solution. The paste specimens were subjected to temperatures as high as 900oC and the behaviour at elevated temperatures were investigated on the basis of physical appearance, weight losses, residual strength, shrinkage measurements and sorptivity tests at different temperatures. Scanning electron microscopy along with EDX and XRD tests were also conducted to examine microstructure and mineralogical changes during the thermal exposure. Specimens which were initially grey turned reddish accompanied by appearance of small cracks as the temperature increased to 900oC. Loss of weight was more in specimens manufactured with highest Na2O content. Geopolymer paste specimen containing minimum Na2O performed better than those with higher Na2O content in terms of residual compressive strength.Keywords: Compressive strength, EDX, Elevated temperature, Fly ash, Geopolymer, Scanning electron microscopy, XRD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292461 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels
Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef
Abstract:
This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.Keywords: Heat and mass transfer, mixed convection, Poiseuille-Rayleigh-Benard flow, rectangular duct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087