Search results for: Bit error rate.
1942 The Mechanistic Deconvolutive Image Sensor Model for an Arbitrary Pan–Tilt Plane of View
Authors: S. H. Lim, T. Furukawa
Abstract:
This paper presents a generalized form of the mechanistic deconvolution technique (GMD) to modeling image sensors applicable in various pan–tilt planes of view. The mechanistic deconvolution technique (UMD) is modified with the given angles of a pan–tilt plane of view to formulate constraint parameters and characterize distortion effects, and thereby, determine the corrected image data. This, as a result, does not require experimental setup or calibration. Due to the mechanistic nature of the sensor model, the necessity for the sensor image plane to be orthogonal to its z-axis is eliminated, and it reduces the dependency on image data. An experiment was constructed to evaluate the accuracy of a model created by GMD and its insensitivity to changes in sensor properties and in pan and tilt angles. This was compared with a pre-calibrated model and a model created by UMD using two sensors with different specifications. It achieved similar accuracy with one-seventh the number of iterations and attained lower mean error by a factor of 2.4 when compared to the pre-calibrated and UMD model respectively. The model has also shown itself to be robust and, in comparison to pre-calibrated and UMD model, improved the accuracy significantly.Keywords: Image sensor modeling, mechanistic deconvolution, calibration, lens distortion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15281941 Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier
Authors: Montree Kumngern, Kobchai Dejhan
Abstract:
Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.Keywords: Class-AB, dual-mode CMOS analog multiplier, CMOS analog integrated circuit, CMOS translinear integrated circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22861940 Catalytic Decomposition of Potassium Monopersulfate. The Kinetics
Authors: Olga Gimeno, Javier Rivas, Maria Carbajo, Teresa Borralho
Abstract:
Potassium monopersulfate has been decomposed in aqueous solution in the presence of Co(II). The process has been simulated by means of a mechanism based on elementary reactions. Rate constants have been taken from literature reports or, alternatively, assimilated to analogous reactions occurring in Fenton's chemistry. Several operating conditions have been successfully applied.
Keywords: Monopersulfate, Oxone®, Sulfate radicals, Water treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701939 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki
Abstract:
This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.
Keywords: Fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17321938 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater
Authors: Abimbola M. Enitan, Josiah Adeyemo
Abstract:
Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (μmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (d¯¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.
Keywords: Brewery wastewater, methane generation model, environment, anaerobic modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42071937 Performance of BLDC Motor under Kalman Filter Sensorless Drive
Authors: Yuri Boiko, Ci Lin, Iluju Kiringa, Tet Yeap
Abstract:
The performance of a permanent magnet brushless direct current (BLDC) motor controlled by the Kalman filter based position-sensorless drive is studied in terms of its dependence from the system’s parameters variations. The effects of the system’s parameters changes on the dynamic behavior of state variables are verified. Simulated is the closed loop control scheme with Kalman filter in the feedback line. Distinguished are two separate data sampling modes in analyzing feedback output from the BLDC motor: (1) equal angular separation and (2) equal time intervals. In case (1), the data are collected via equal intervals of rotor’s angular position i, i.e. keeping = const. In case (2), the data collection time points ti are separated by equal sampling time intervals t = const. Demonstrated are the effects of the parameters changes on the sensorless control flow, in particular, reduction of the instability torque ripples, switching spikes, and torque load balancing. It is specifically shown that an efficient suppression of commutation induced instability torque ripples is an achievable selection of the sampling rate in the Kalman filter settings above a certain critical value. The computational cost of such suppression is shown to be higher for the motors with lower induction values of the windings.
Keywords: BLDC motor, Kalman filter, sensorless drive, state variables, instability torque ripples reduction, sampling rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7301936 RF Power Consumption Emulation Optimized with Interval Valued Homotopies
Authors: Deogratius Musiige, François Anton, Vital Yatskevich, Laulagnet Vincent, Darka Mioc, Nguyen Pierre
Abstract:
This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions. The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power consumption of the RF device operating at 5MHz using homotopy between 2 continuous power consumptions of the RF device operating at the bandwidths 3MHz and 10MHz.
Keywords: Radio frequency, high power amplifier, baseband, LTE, power, emulation, homotopy, interval analysis, Tx power, register-transfer level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18041935 Developing New Processes and Optimizing Performance Using Response Surface Methodology
Authors: S. Raissi
Abstract:
Response surface methodology (RSM) is a very efficient tool to provide a good practical insight into developing new process and optimizing them. This methodology could help engineers to raise a mathematical model to represent the behavior of system as a convincing function of process parameters. Through this paper the sequential nature of the RSM surveyed for process engineers and its relationship to design of experiments (DOE), regression analysis and robust design reviewed. The proposed four-step procedure in two different phases could help system analyst to resolve the parameter design problem involving responses. In order to check accuracy of the designed model, residual analysis and prediction error sum of squares (PRESS) described. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with one or more responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.Keywords: Response Surface Methodology (RSM), Design of Experiments (DOE), Process modeling, Process setting, Process optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18371934 Automated Algorithm for Removing Continuous Flame Spectrum Based On Sampled Linear Bases
Authors: Luis Arias, Jorge E. Pezoa, Daniel Sbárbaro
Abstract:
In this paper, an automated algorithm to estimate and remove the continuous baseline from measured spectra containing both continuous and discontinuous bands is proposed. The algorithm uses previous information contained in a Continuous Database Spectra (CDBS) to obtain a linear basis, with minimum number of sampled vectors, capable of representing a continuous baseline. The proposed algorithm was tested by using a CDBS of flame spectra where Principal Components Analysis and Non-negative Matrix Factorization were used to obtain linear bases. Thus, the radical emissions of natural gas, oil and bio-oil flames spectra at different combustion conditions were obtained. In order to validate the performance in the baseline estimation process, the Goodness-of-fit Coefficient and the Root Mean-squared Error quality metrics were evaluated between the estimated and the real spectra in absence of discontinuous emission. The achieved results make the proposed method a key element in the development of automatic monitoring processes strategies involving discontinuous spectral bands.
Keywords: Flame spectra, removing baseline, recovering spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17521933 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271932 Analysis of Climatic Strategies in Designing the Residential Buildings in Cold Dry Climate of Tabriz Metropolis to Reduce Air Pollution in Urban Environment
Authors: Shahryar Shaghaghi G., Paria Violette Shakiba , Gholamreza Irani
Abstract:
Nowadays, the earth is countered with serious problem of air pollution. This problem has been started from the industrial revolution and has been faster in recent years, so that leads the earth to ecological and environmental disaster. One of its results is the global warming problem and its related increase in global temperature. The most important factors in air pollution especially in urban environments are Automobiles and residential buildings that are the biggest consumers of the fossil energies, so that if the residential buildings as a big part of the consumers of such energies reduce their consumption rate, the air pollution will be decreased. Since Metropolises are the main centers of air pollution in the world, assessment and analysis of efficient strategies in decreasing air pollution in such cities, can lead to the desirable and suitable results and can solve the problem at least in critical level. Tabriz city is one of the most important metropolises in North west of Iran that about two million people are living there. for its situation in cold dry climate, has a high rate of fossil energies consumption that make air pollution in its urban environment. These two factors, being both metropolis and in cold dry climate, make this article try to analyze the strategies of climatic design in old districts of the city and use them in new districts of the future. These strategies can be used in this city and other similar cities and pave the way to reduce energy consumption and related air pollution to save whole world.Keywords: Air pollution, Urban Environment, Metropolis, Residential building, Fossil energies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17851931 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production
Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy
Abstract:
Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.
Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24151930 The DAQ Debugger for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.Keywords: DAQ debugger, data acquisition system, FPGA, system signals, Qt framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8931929 Response Surface Methodology Approach to Defining Ultrafiltration of Steepwater from Corn Starch Industry
Authors: Zita I. Šereš, Ljubica P. Dokić, Dragana M. Šoronja Simović, Cecilia Hodur, Zsuzsanna Laszlo, Ivana Nikolić, Nikola Maravić
Abstract:
In this work the concentration of steepwater from corn starch industry is monitored using ultrafiltration membrane. The aim was to examine the conditions of ultrafiltration of steepwater by applying the membrane of 2.5nm. The parameters that vary during the course of ultrafiltration, were the transmembrane pressure, flow rate, while the permeate flux and the dry matter content of permeate and retentate were the dependent parameter constantly monitored during the process. Experiments of ultrafiltration are conducted on the samples of steepwater, which were obtained from the starch wet milling plant „Jabuka“ Pancevo. The procedure of ultrafiltration on a single-channel 250mm lenght, with inner diameter of 6.8mm and outer diameter of 10mm membrane were carried on. The membrane is made of a-Al2O3 with TiO2 layer obtained from GEA (Germany). The experiments are carried out at a flow rate ranging from 100 to 200lh-1 and transmembrane pressure of 1-3 bars. During the experiments of steepwater ultrafiltration, the change of permeate flux, dry matter content of permeate and retentate, as well as the absorbance changes of the permeate and retentate were monitored. The experimental results showed that the maximum flux reaches about 40lm-2h-1. For responses obtained after experiments, a polynomial model of the second degree is established to evaluate and quantify the influence of the variables. The quadratic equitation fits with the experimental values, where the coefficient of determination for flux is 0.96. The dry matter content of the retentate is increased for about 6%, while the dry matter content of permeate was reduced for about 35-40%, respectively. During steepwater ultrafiltration in permeate stays 40% less dry matter compared to the feed.
Keywords: Ultrafiltration, steepwater, starch industry, ceramic membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21361928 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16731927 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators
Authors: Fethi Soltani, Adel Almarashi, Idir Mechai
Abstract:
Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.Keywords: Fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15271926 Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings
Authors: Mannan Mridha, Usama Gazay, Kosovare V. Aslani, Hugo Linder, Alice Ravizza, Carmelo de Maria
Abstract:
In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.
Keywords: Healthcare for low resources settings, health awareness education, improve patient care and safety, smart and affordable medical device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8551925 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.
Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25611924 A Web-Based Self-Learning Grammar for Spoken Language Understanding
Authors: S. M. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno
Abstract:
One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.
Keywords: Spoken Dialog System, Spoken Language Understanding, Web Semantic, Name Entity Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17761923 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia
Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi
Abstract:
Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.
Keywords: Artificial neural networks, short-term load forecasting, back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21121922 Integrating Geographic Information into Diabetes Disease Management
Authors: Tsu-Yun Chiu, Tsung-Hsueh Lu, Tain-Junn Cheng
Abstract:
Background: Traditional chronic disease management did not pay attention to effects of geographic factors on the compliance of treatment regime, which resulted in geographic inequality in outcomes of chronic disease management. This study aims to examine the geographic distribution and clustering of quality indicators of diabetes care. Method: We first extracted address, demographic information and quality of care indicators (number of visits, complications, prescription and laboratory records) of patients with diabetes for 2014 from medical information system in a medical center in Tainan City, Taiwan, and the patients’ addresses were transformed into district- and village-level data. We then compared the differences of geographic distribution and clustering of quality of care indicators between districts and villages. Despite the descriptive results, rate ratios and 95% confidence intervals (CI) were estimated for indices of care in order to compare the quality of diabetes care among different areas. Results: A total of 23,588 patients with diabetes were extracted from the hospital data system; whereas 12,716 patients’ information and medical records were included to the following analysis. More than half of the subjects in this study were male and between 60-79 years old. Furthermore, the quality of diabetes care did indeed vary by geographical levels. Thru the smaller level, we could point out clustered areas more specifically. Fuguo Village (of Yongkang District) and Zhiyi Village (of Sinhua District) were found to be “hotspots” for nephropathy and cerebrovascular disease; while Wangliau Village and Erwang Village (of Yongkang District) would be “coldspots” for lowest proportion of ≥80% compliance to blood lipids examination. On the other hand, Yuping Village (in Anping District) was the area with the lowest proportion of ≥80% compliance to all laboratory examination. Conclusion: In spite of examining the geographic distribution, calculating rate ratios and their 95% CI could also be a useful and consistent method to test the association. This information is useful for health planners, diabetes case managers and other affiliate practitioners to organize care resources to the areas most needed.
Keywords: Geocoding, chronic disease management, quality of diabetes care, rate ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9971921 Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation
Authors: Bahram Khan, Anderson Rocha Ramos, Rui R. Paulo, Fernando J. Velez
Abstract:
With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%).Keywords: Component carrier, carrier aggregation, LTE-Advanced, scheduling, spectrum management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5631920 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability
Authors: Pradeep Kumar, Abdul Wahid
Abstract:
Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.
Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18391919 Crack Width Evaluation for Flexural RC Members with Axial Tension
Authors: Sukrit Ghorai
Abstract:
Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools supports the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user friendly and ready to evolve for a greater spectrum of section sizes and materials.
Keywords: Concrete structures, crack width calculation, serviceability limit state, structural design, bridge engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66701918 Empirical Modeling of Air Dried Rubberwood Drying System
Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit
Abstract:
Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (R²), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (R² = 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.
Keywords: Empirical models, hot air, moisture ratio, rubberwood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7801917 Maximizer of the Posterior Marginal Estimate for Noise Reduction of JPEG-compressed Image
Authors: Yohei Saika, Yuji Haraguchi
Abstract:
We constructed a method of noise reduction for JPEG-compressed image based on Bayesian inference using the maximizer of the posterior marginal (MPM) estimate. In this method, we tried the MPM estimate using two kinds of likelihood, both of which enhance grayscale images converted into the JPEG-compressed image through the lossy JPEG image compression. One is the deterministic model of the likelihood and the other is the probabilistic one expressed by the Gaussian distribution. Then, using the Monte Carlo simulation for grayscale images, such as the 256-grayscale standard image “Lena" with 256 × 256 pixels, we examined the performance of the MPM estimate based on the performance measure using the mean square error. We clarified that the MPM estimate via the Gaussian probabilistic model of the likelihood is effective for reducing noises, such as the blocking artifacts and the mosquito noise, if we set parameters appropriately. On the other hand, we found that the MPM estimate via the deterministic model of the likelihood is not effective for noise reduction due to the low acceptance ratio of the Metropolis algorithm.Keywords: Noise reduction, JPEG-compressed image, Bayesian inference, the maximizer of the posterior marginal estimate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881916 Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method
Authors: Shan-Jen Cheng, Jr-Ming Miao, Sheng-Ju Wu
Abstract:
The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.
Keywords: PEMFC, numerical simulation, optimization, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25521915 A Proposed Managerial Framework for International Marketing Operations in the Fast Food Industry
Authors: Emmanuel Selase Asamoah, Miloslava Chovancová
Abstract:
When choosing marketing strategies for international markets, one of the factors that should be considered is the cultural differences that exist among consumers in different countries. If the branding strategy has to be contextual and in tune with the culture, then the brand positioning variables has to interact, adapt and respond to the cultural variables in which the brand is operating. This study provides an overview of the relevance of culture in the development of an effective branding strategy in the international business environment. Hence, the main objective of this study is to provide a managerial framework for developing strategies for cross cultural brand management. The framework is useful because it incorporates the variables that are important in the competitiveness of fast food enterprises irrespective of their size. It provides practical, proactive and result oriented analysis that will help fast food firms augment their strategies in the international fast food markets. The proposed framework will enable managers understand the intricacies involved in branding in the global fast food industry and decrease the use of 'trial and error' when entering into unfamiliar markets.
Keywords: culture, branding strategy, marketing mix, mass customization, standardization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26441914 Biomethanation of Palm Oil Mill Effluent (POME) by Membrane Anaerobic System (MAS) using POME as a Substrate
Authors: N.H. Abdurahman, Y. M. Rosli, N. H. Azhari, S. F. Tam
Abstract:
The direct discharge of palm oil mill effluent (POME) wastewater causes serious environmental pollution due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Traditional ways for POME treatment have both economical and environmental disadvantages. In this study, a membrane anaerobic system (MAS) was used as an alternative, cost effective method for treating POME. Six steady states were attained as a part of a kinetic study that considered concentration ranges of 8,220 to 15,400 mg/l for mixed liquor suspended solids (MLSS) and 6,329 to 13,244 mg/l for mixed liquor volatile suspended solids (MLVSS). Kinetic equations from Monod, Contois and Chen & Hashimoto were employed to describe the kinetics of POME treatment at organic loading rates ranging from 2 to 13 kg COD/m3/d. throughout the experiment, the removal efficiency of COD was from 94.8 to 96.5% with hydraulic retention time, HRT from 400.6 to 5.7 days. The growth yield coefficient, Y was found to be 0.62gVSS/g COD the specific microorganism decay rate was 0.21 d-1 and the methane gas yield production rate was between 0.25 l/g COD/d and 0.58 l/g COD/d. Steady state influent COD concentrations increased from 18,302 mg/l in the first steady state to 43,500 mg/l in the sixth steady state. The minimum solids retention time, which was obtained from the three kinetic models ranged from 5 to 12.3 days. The k values were in the range of 0.35 – 0.519 g COD/ g VSS • d and values were between 0.26 and 0.379 d-1. The solids retention time (SRT) decreased from 800 days to 11.6 days. The complete treatment reduced the COD content to 2279 mg/l equivalent to a reduction of 94.8% reduction from the original.
Keywords: COD reduction, POME, kinetics, membrane, anaerobic, monod, contois equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25671913 Double Manifold Sliding Mode Observer for Sensorless Control of Multiphase Induction Machine under Fault Condition
Authors: Mohammad Jafarifar
Abstract:
Multiphase Induction Machine (IM) is normally controlled using rotor field oriented vector control. Under phase(s) loss, the machine currents can be optimally controlled to satisfy certain optimization criteria. In this paper we discuss the performance of double manifold sliding mode observer (DM-SMO) in Sensorless control of multiphase induction machine under unsymmetrical condition (one phase loss). This observer is developed using the IM model in the stationary reference frame. DM-SMO is constructed by adding extra feedback term to conventional single mode sliding mode observer (SM-SMO) which proposed in many literature. This leads to a fully convergent observer that also yields an accurate estimate of the speed and stator currents. It will be shown by the simulation results that the estimated speed and currents by the method are very well and error between real and estimated quantities is negligible. Also parameter sensitivity analysis shows that this method is rather robust against parameter variation.Keywords: Multiphase induction machine, field oriented control, sliding mode, unsymmetrical condition, manifold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818