Search results for: Paria Violette Shakiba
3 Analysis of Climatic Strategies in Designing the Residential Buildings in Cold Dry Climate of Tabriz Metropolis to Reduce Air Pollution in Urban Environment
Authors: Shahryar Shaghaghi G., Paria Violette Shakiba , Gholamreza Irani
Abstract:
Nowadays, the earth is countered with serious problem of air pollution. This problem has been started from the industrial revolution and has been faster in recent years, so that leads the earth to ecological and environmental disaster. One of its results is the global warming problem and its related increase in global temperature. The most important factors in air pollution especially in urban environments are Automobiles and residential buildings that are the biggest consumers of the fossil energies, so that if the residential buildings as a big part of the consumers of such energies reduce their consumption rate, the air pollution will be decreased. Since Metropolises are the main centers of air pollution in the world, assessment and analysis of efficient strategies in decreasing air pollution in such cities, can lead to the desirable and suitable results and can solve the problem at least in critical level. Tabriz city is one of the most important metropolises in North west of Iran that about two million people are living there. for its situation in cold dry climate, has a high rate of fossil energies consumption that make air pollution in its urban environment. These two factors, being both metropolis and in cold dry climate, make this article try to analyze the strategies of climatic design in old districts of the city and use them in new districts of the future. These strategies can be used in this city and other similar cities and pave the way to reduce energy consumption and related air pollution to save whole world.Keywords: Air pollution, Urban Environment, Metropolis, Residential building, Fossil energies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17722 An Innovative Fuzzy Decision Making Based Genetic Algorithm
Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad
Abstract:
Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.Keywords: Genetic Algorithm, Fuzzy Decision Making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15931 Applying the Regression Technique for Prediction of the Acute Heart Attack
Authors: Paria Soleimani, Arezoo Neshati
Abstract:
Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in early diagnosis of the acute heart attacks is obvious. The main purpose of this study would be to enable patients to become better informed about their condition and to encourage them to seek professional care at an earlier stage in the appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea and vomiting, were selected as the main features.
Keywords: Coronary heart disease, acute heart attacks, prediction, logistic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418