Search results for: power system simulation (MATLAB)
10329 A Delay-Tolerant Distributed Query Processing Architecture for Mobile Environment
Authors: T.P. Andamuthu, Dr. P. Balasubramanie
Abstract:
The intermittent connectivity modifies the “always on" network assumption made by all the distributed query processing systems. In modern- day systems, the absence of network connectivity is considered as a fault. Since the last upload, it might not be feasible to transmit all the data accumulated right away over the available connection. It is possible that vital information may be delayed excessively when the less important information takes place of the vital information. Owing to the restricted and uneven bandwidth, it is vital that the mobile nodes make the most advantageous use of the connectivity when it arrives. Hence, in order to select the data that needs to be transmitted first, some sort of data prioritization is essential. A continuous query processing system for intermittently connected mobile networks that comprises of a delaytolerant continuous query processor distributed across the mobile hosts has been proposed in this paper. In addition, a mechanism for prioritizing query results has been designed that guarantees enhanced accuracy and reduced delay. It is illustrated that our architecture reduces the client power consumption, increases query efficiency by the extensive simulation results.Keywords: Broadcast, Location, Mobile host, Mobility, Query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145010328 Performance Evaluation of AOMDV-PAMAC Protocols for Ad Hoc Networks
Authors: B. Malarkodi, S. K. Riyaz Hussain, B. Venkataramani
Abstract:
Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. In this project a link layer algorithm known as Power Aware medium Access Control (PAMAC) protocol is proposed which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. When the battery capacity goes below a predefined threshold, routes going through these nodes will be avoided and these nodes will act only as source and destination. Further, the first few nodes whose battery power drained to the set threshold value are pushed to the exterior part of the network and the nodes in the exterior are brought to the interior. Since less total power is required to forward packets for each connection. The network layer protocol AOMDV is basically an extension to the AODV routing protocol. AOMDV is designed to form multiple routes to the destination and it also avoid the loop formation so that it reduces the unnecessary congestion to the channel. In this project, the performance of AOMDV is evaluated using PAMAC as a MAC layer protocol and the average power consumption, throughput and average end to end delay of the network are calculated and the results are compared with that of the other network layer protocol AODV.Keywords: AODV, PAMAC, AOMDV, Power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182510327 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85710326 Hybrid Finite Element Analysis of Expansion Joints for Piping Systems in Aircraft Engine External Configurations and Nuclear Power Plants
Authors: Dong Wook Lee
Abstract:
This paper presents a method to analyze the stiffness of the expansion joint with structural support using a hybrid method combining computational and analytical methods. Many expansion joints found in tubes and ducts of mechanical structures are designed to absorb thermal expansion mismatch between their structural members and deal with misalignments introduced from the assembly/manufacturing processes. One of the important design perspectives is the system’s vibrational characteristics. We calculate the stiffness as a characterization parameter for structural joint systems using a combined Finite Element Analysis (FEA) and an analytical method. We apply the methods to two sample applications: external configurations of aircraft engines and nuclear power plant structures.Keywords: Expansion joint, expansion joint stiffness, Finite Element Analysis, FEA, nuclear power plants, aircraft engine external configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70310325 Development of a Three-Dimensional-Flywheel Robotic System
Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu
Abstract:
In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.
Keywords: Gyro, gimbal, Lagrange equation, spherical robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206010324 Designing of Virtual Laboratories Based on Extended Event Driving Simulation Method
Abstract:
Here are many methods for designing and implementation of virtual laboratories, because of their special features. The most famous architectural designs are based on the events. This model of architecting is so efficient for virtual laboratories implemented on a local network. Later, serviceoriented architecture, gave the remote access ability to them and Peer-To-Peer architecture, hired to exchanging data with higher quality and more speed. Other methods, such as Agent- Based architecting, are trying to solve the problems of distributed processing in a complicated laboratory system. This study, at first, reviews the general principles of designing a virtual laboratory, and then compares the different methods based on EDA, SOA and Agent-Based architecting to present weaknesses and strengths of each method. At the end, we make the best choice for design, based on existing conditions and requirements.Keywords: Virtual Laboratory, Software Engineering, Simulation, EDA, SOA, Agent-Based Architecting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160010323 A Voltage Based Maximum Power Point Tracker for Low Power and Low Cost Photovoltaic Applications
Authors: Jawad Ahmad, Hee-Jun Kim
Abstract:
This paper describes the design of a voltage based maximum power point tracker (MPPT) for photovoltaic (PV) applications. Of the various MPPT methods, the voltage based method is considered to be the simplest and cost effective. The major disadvantage of this method is that the PV array is disconnected from the load for the sampling of its open circuit voltage, which inevitably results in power loss. Another disadvantage, in case of rapid irradiance variation, is that if the duration between two successive samplings, called the sampling period, is too long there is a considerable loss. This is because the output voltage of the PV array follows the unchanged reference during one sampling period. Once a maximum power point (MPP) is tracked and a change in irradiation occurs between two successive samplings, then the new MPP is not tracked until the next sampling of the PV array voltage. This paper proposes an MPPT circuit in which the sampling interval of the PV array voltage, and the sampling period have been shortened. The sample and hold circuit has also been simplified. The proposed circuit does not utilize a microcontroller or a digital signal processor and is thus suitable for low cost and low power applications.
Keywords: Maximum power point tracker, Sample and hold amplifier, Sampling interval, Sampling period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276710322 2D-Modeling with Lego Mindstorms
Authors: Miroslav Popelka, Jakub Nožička
Abstract:
The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.
Keywords: LEGO Mindstorms, ultrasonic sensor, Real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 310910321 Depressing Turbine-Generator Supersynchronous Torsional Torques by Using Virtual Inertia
Authors: Jong-Ian Tsai, Chi-Chuan Chen, Tung-Sheng Zhan, Rong-Ching Wu
Abstract:
Single-pole switching scheme is widely used in the Extra High Voltage system. However, the substantial negativesequence current injected to the turbine-generators imposes the electromagnetic (E/M) torque of double system- frequency components during the dead time (between single-pole clearing and line reclosing). This would induce supersynchronous resonance (SPSR) torque amplifications on low pressure turbine generator blades and even lead to fatigue damage. This paper proposes the design of a mechanical filter (MF) with natural frequency close to double-system frequency. From the simulation results, it is found that such a filter not only successfully damps the resonant effect, but also has the characteristics of feasibility and compact.Keywords: Single-pole, Supersynchronous, Blade, Unbalance, filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174910320 Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers
Authors: E. Taslak, C. Kocatepe, O. Arıkan, C. F. Kumru
Abstract:
In insulation and cooling of power transformers various liquids are used. Mineral oils have wide availability and low cost. However, they have a poor biodegradability potential and lower fire point in comparison with other insulating liquids. Use of a liquid having high biodegradability is important due to environmental consideration. This paper investigates edible corn oil as an alternative to mineral oil. Various properties of mineral and corn oil like breakdown voltage, dissipation factor, relative dielectric constant, power loss and resistivity were measured according to different standards.Keywords: Breakdown voltage, corn oil, dissipation factor, mineral oil, power loss, relative dielectric constant, resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317510319 Direct Power Control Applied on 5-Level Diode Clamped Inverter Powered by a Renewable Energy Source
Authors: A. Elnady
Abstract:
This paper presents an improved Direct Power Control (DPC) scheme applied to the multilevel inverter that forms a Distributed Generation Unit (DGU). This paper demonstrates the performance of active and reactive power injected by the DGU to the smart grid. The DPC is traditionally operated by the hysteresis controller with the Space Vector Modulation (SVM) which is applied on the 2-level inverters or 3-level inverters. In this paper, the DPC is operated by the PI controller with the Phase-Disposition Pulse Width Modulation (PD-PWM) applied to the 5-level diode clamped inverter. The new combination of the DPC, PI controller, PD-PWM and multilevel inverter proves that its performance is much better than the conventional hysteresis-SVM based DPC. Simulations results have been presented to validate the performance of the suggested control scheme in the grid-connected mode.
Keywords: Direct power control, PI controller, PD-PWM, and power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85610318 Reduction of Leakage Power in Digital Logic Circuits Using Stacking Technique in 45 Nanometer Regime
Authors: P.K. Sharma, B. Bhargava, S. Akashe
Abstract:
Power dissipation due to leakage current in the digital circuits is a biggest factor which is considered specially while designing nanoscale circuits. This paper is exploring the ideas of reducing leakage current in static CMOS circuits by stacking the transistors in increasing numbers. Clearly it means that the stacking of OFF transistors in large numbers result a significant reduction in power dissipation. Increase in source voltage of NMOS transistor minimizes the leakage current. Thus stacking technique makes circuit with minimum power dissipation losses due to leakage current. Also some of digital circuits such as full adder, D flip flop and 6T SRAM have been simulated in this paper, with the application of reduction technique on ‘cadence virtuoso tool’ using specter at 45nm technology with supply voltage 0.7V.
Keywords: Stack, 6T SRAM cell, low power, threshold voltage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 342110317 Development of Admire Longitudinal Quasi-Linear Model by using State Transformation Approach
Authors: Jianqiao. Yu, Jianbo. Wang, Xinzhen. He
Abstract:
This paper presents a longitudinal quasi-linear model for the ADMIRE model. The ADMIRE model is a nonlinear model of aircraft flying in the condition of high angle of attack. So it can-t be considered to be a linear system approximately. In this paper, for getting the longitudinal quasi-linear model of the ADMIRE, a state transformation based on differentiable functions of the nonscheduling states and control inputs is performed, with the goal of removing any nonlinear terms not dependent on the scheduling parameter. Since it needn-t linear approximation and can obtain the exact transformations of the nonlinear states, the above-mentioned approach is thought to be appropriate to establish the mathematical model of ADMIRE. To verify this conclusion, simulation experiments are done. And the result shows that this quasi-linear model is accurate enough.
Keywords: quasi-linear model, simulation, state transformation approach, the ADMIRE model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150710316 An Innovative Transient Free Adaptive SVC in Stepless Mode of Control
Authors: U. Gudaru, D. R. Patil
Abstract:
Electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A comprehensive static VAR compensator consisting of capacitor bank in five binary sequential steps in conjunction with a thyristor controlled reactor of smallest step size is employed in the investigative work. The work deals with the performance evaluation through analytical studies and practical implementation on an existing system. A fast acting error adaptive controller is developed suitable both for contactor and thyristor switched capacitors. The switching operations achieved are transient free, practically no need to provide inrush current limiting reactors, TCR size minimum providing small percentages of nontriplen harmonics, facilitates stepless variation of reactive power depending on load requirement so as maintain power factor near unity always. It is elegant, closed loop microcontroller system having the features of self regulation in adaptive mode for automatic adjustment. It is successfully tested on a distribution transformer of three phase 50 Hz, Dy11, 11KV/440V, 125 KVA capacity and the functional feasibility and technical soundness are established. The controller developed is new, adaptable to both LT & HT systems and practically established to be giving reliable performance.
Keywords: Binary Sequential switched capacitor bank, TCR, Nontriplen harmonics, step less Q control, transient free
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233610315 The Experimental and Numerical Analysis of a Lightpipe using a Simulation Software
Authors: M. Paroncini, F. Corvaro, G. Nardini, S. Pistolesi
Abstract:
A lightpipe is an about 99 percent specular reflective mirror pipe or duct that is used for the transmission of the daylight from the outside into a building. The lightpipes are usually used in the daylighting buildings, in the residential, industrial and commercial sectors. This paper is about the performances of a lightpipe installed in a laboratory (3 m x 2.6 m x 3 m) without windows. The aim is to analyse the luminous intensity distribution for several sky/sun conditions. The lightpipe was monitored during the year 2006. The lightpipe is 1 m long and the diameter of the top collector and of the internal diffuser device is 0.25 m. In the laboratory there are seven illuminance sensors: one external is located on the roof of the laboratory and six internal sensors are connected to a data acquisition system. The internal sensors are positioned under the internal diffusive device at an height of 0.85 m from the floor to simulate a working plane. The numerical data are obtained through a simulation software. This paper shows the comparison between the experimental and numerical results concerning the behavior of the lightpipe.Keywords: Daylighting, Desktop Radiance, Lightpipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157310314 Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives
Authors: Roozbeh Molavi, Davood A. Khaburi
Abstract:
The permanent magnet synchronous motor (PMSM) is very useful in many applications. Vector control of PMSM is popular kind of its control. In this paper, at first an optimal vector control for PMSM is designed and then results are compared with conventional vector control. Then, it is assumed that the measurements are noisy and linear quadratic Gaussian (LQG) methodology is used to filter the noises. The results of noisy optimal vector control and filtered optimal vector control are compared to each other. Nonlinearity of PMSM and existence of inverter in its control circuit caused that the system is nonlinear and time-variant. With deriving average model, the system is changed to nonlinear time-invariant and then the nonlinear system is converted to linear system by linearization of model around average values. This model is used to optimize vector control then two optimal vector controls are compared to each other. Simulation results show that the performance and robustness to noise of the control system has been highly improved.Keywords: Kalman filter, Linear quadratic Gaussian (LQG), Linear quadratic regulator (LQR), Permanent-Magnet synchronousmotor (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300910313 Vickers Indentation Simulation of Buffer Layer Thickness Effect for DLC Coated Materials
Authors: Abdul Wasy, Balakrishnan G., Yi Qi Wang, Atta Ur Rehman, Jung Il Song
Abstract:
Vickers indentation is used to measure the hardness of materials. In this study, numerical simulation of Vickers indentation experiment was performed for Diamond like Carbon (DLC) coated materials. DLC coatings were deposited on stainless steel 304 substrates with Chromium buffer layer using RF Magnetron and T-shape Filtered Cathodic Vacuum Arc Dual system The objective of this research is to understand the elastic plastic properties, stress strain distribution, ring and lateral crack growth and propagation, penetration depth of indenter and delamination of coating from substrate with effect of buffer layer thickness. The effect of Poisson-s ratio of DLC coating was also analyzed. Indenter penetration is more in coated materials with thin buffer layer as compared to thicker one, under same conditions. Similarly, the specimens with thinner buffer layer failed quickly due to high residual stress as compared to the coated materials with reasonable thickness of 200nm buffer layer. The simulation results suggested the optimized thickness of 200 nm among the prepared specimens for durable and long service.Keywords: Thin film, buffer layer. Diamond like Carbon, Vickers indentation, Poisson's ratio, Finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 293610312 Particle Swarm Optimization for Design of Water Distribution Systems
Authors: A. Vasan
Abstract:
Particle swarm optimization (PSO) technique is applied to design the water distribution pipeline network. A simulation-optimization model is formulated with the objective of minimizing cost and is applied to a benchmark water distribution system optimization problem. The benchmark problem taken for the application of PSO technique to optimize the pipe size of the water distribution network is New York City water supply system problem. The results from the analysis infer that PSO is a potential alternative optimization technique when compared to other heuristic techniques for optimal sizing of water distribution systems.
Keywords: Water distribution systems, Optimization, Particle swarm optimization, Swarm intelligence, New York water supply system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153710311 An Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks
Authors: Amir Sepasi Zahmati, Bahman Abolhassani, Ali Asghar Beheshti Shirazi, Ali Shojaee Bakhtiari
Abstract:
A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high-power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization.Keywords: Clustering methods, energy efficiency, routingprotocol, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272110310 Development of a Spark Electrode Ignition System for an Explosion Vessel
Authors: Shaharin A. Sulaiman, Mizuan Minhat
Abstract:
This paper presents development of an ignition system using spark electrodes for application in a research explosion vessel. A single spark is aimed to be discharged with quantifiable ignition energy. The spark electrode system would enable study of flame propagation, ignitability of fuel-air mixtures and other fundamental characteristics of flames. The principle of the capacitive spark circuit of ASTM is studied to charge an appropriate capacitance connected across the spark gap through a large resistor by a high voltage from the source of power supply until the initiation of spark. Different spark energies could be obtained mainly by varying the value of the capacitance and the supply current. The spark sizes produced are found to be affected by the spark gap, electrode size, input voltage and capacitance value.Keywords: Ignition, Spark Electrode, Flame
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209910309 Fractional-Order PI Controller Tuning Rules for Cascade Control System
Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh
Abstract:
The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods.
Keywords: Fractional calculus, fractional–order proportional integral controller, cascade control system, internal model control approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155710308 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell
Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz
Abstract:
Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.
Keywords: Component, robotic, automated, production, offline programming, CAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111210307 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method
Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola
Abstract:
In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.
Keywords: Constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361510306 Numerical Analysis and Influence of the Parameters on Slope Stability
Authors: Fahim Kahlouche, Alaoua Bouaicha, Sihem Chaîbeddra, Sid-Ali Rafa, Abdelhamid Benouali
Abstract:
A designing of a structure requires its realization on rough or sloping ground. Besides the problem of the stability of the landslide, the behavior of the foundations that are bearing the structure is influenced by the destabilizing effect of the ground’s slope. This article focuses on the analysis of the slope stability exposed to loading by introducing the different factors influencing the slope’s behavior on the one hand, and on the influence of this slope on the foundation’s behavior on the other hand. This study is about the elastoplastic modelization using FLAC 2D. This software is based on the finite difference method, which is one of the older methods of numeric resolution of differential equations system with initial and boundary conditions. It was developed for the geotechnical simulation calculation. The aim of this simulation is to demonstrate the notable effect of shear modulus « G », cohesion « C », inclination angle (edge) « β », and distance between the foundation and the head of the slope on the stability of the slope as well as the stability of the foundation. In our simulation, the slope is constituted by homogenous ground. The foundation is considered as rigid/hard; therefore, the loading is made by the application of the vertical strengths on the nodes which represent the contact between the foundation and the ground.Keywords: Slope, shallow foundation, numeric method, FLAC 2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119510305 Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies
Authors: Rade M. Ciric
Abstract:
The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed.
Keywords: Engineering education, power distribution network, syllabus implementation, outcome evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77510304 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.
Keywords: Model Predictive Control, Space Vector Pulse Width Modulation, Voltage Source Inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452210303 Numerical Simulation of Electric and Hydrodynamic Fields Distribution in a Dielectric Liquids Electrofilter Cell
Authors: Narcis C. Ostahie, Tudor Sajin
Abstract:
In this paper a numerical simulation of electric and hydrodynamic fields distribution in an electrofilter for dielectric liquids cell is made. The simulation is made with the purpose to determine the trajectory of particles that moves under the action of external force in an electric and hydrodynamic field created inside of an electrofilter for dielectric liquids. Particle trajectory is analyzed for a dielectric liquid-solid particles suspension.Keywords: Dielectric liquids, electrohydrodynamics, energy, high voltage, particles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161410302 Ultrasonic Intensification of the Chemical Degradation of Methyl Violet: An Experimental Study
Authors: N. P. Dhanalakshmi, R. Nagarajan
Abstract:
The sonochemical decolorization and degradation of azo dye Methyl violet using Fenton-s reagent in the presence of a high-frequency acoustic field has been investigated. Dyeing and textile effluents are the major sources of azo dyes, and are most troublesome among industrial wastewaters, causing imbalance in the eco-system. The effect of various operating conditions (initial concentration of dye, liquid-phase temperature, ultrasonic power and frequency and process time) on sonochemical degradation was investigated. Conversion was found to increase with increase in initial concentration, temperature, power level and frequency. Both horntype and tank-type sonicators were used, at various power levels (250W, 400W and 500W) for frequencies ranging from 20 kHz - 1000 kHz. A 'Process Intensification' parameter PI, was defined to quantify the enhancement of the degradation reaction by ultrasound when compared to control (i.e., without ultrasound). The present work clearly demonstrates that a high-frequency ultrasonic bath can be used to achieve higher process throughput and energy efficiency at a larger scale of operation.
Keywords: Fenton oxidation, process intensification, sonochemical degradation of MV, ultrasonic frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254910301 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models
Authors: Viriyavudh Sim, WooYoung Jung
Abstract:
Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.
Keywords: Wind fragility, glass window, high rise apartment, Monte Carlo Simulation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122110300 Construction of Intersection of Nondeterministic Finite Automata using Z Notation
Authors: Nazir Ahmad Zafar, Nabeel Sabir, Amir Ali
Abstract:
Functionalities and control behavior are both primary requirements in design of a complex system. Automata theory plays an important role in modeling behavior of a system. Z is an ideal notation which is used for describing state space of a system and then defining operations over it. Consequently, an integration of automata and Z will be an effective tool for increasing modeling power for a complex system. Further, nondeterministic finite automata (NFA) may have different implementations and therefore it is needed to verify the transformation from diagrams to a code. If we describe formal specification of an NFA before implementing it, then confidence over transformation can be increased. In this paper, we have given a procedure for integrating NFA and Z. Complement of a special type of NFA is defined. Then union of two NFAs is formalized after defining their complements. Finally, formal construction of intersection of NFAs is described. The specification of this relationship is analyzed and validated using Z/EVES tool.Keywords: Modeling, Nondeterministic finite automata, Znotation, Integration of approaches, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3181