Numerical Analysis and Influence of the Parameters on Slope Stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Numerical Analysis and Influence of the Parameters on Slope Stability

Authors: Fahim Kahlouche, Alaoua Bouaicha, Sihem Chaîbeddra, Sid-Ali Rafa, Abdelhamid Benouali

Abstract:

A designing of a structure requires its realization on rough or sloping ground. Besides the problem of the stability of the landslide, the behavior of the foundations that are bearing the structure is influenced by the destabilizing effect of the ground’s slope. This article focuses on the analysis of the slope stability exposed to loading by introducing the different factors influencing the slope’s behavior on the one hand, and on the influence of this slope on the foundation’s behavior on the other hand. This study is about the elastoplastic modelization using FLAC 2D. This software is based on the finite difference method, which is one of the older methods of numeric resolution of differential equations system with initial and boundary conditions. It was developed for the geotechnical simulation calculation. The aim of this simulation is to demonstrate the notable effect of shear modulus « G », cohesion « C », inclination angle (edge) « β », and distance between the foundation and the head of the slope on the stability of the slope as well as the stability of the foundation. In our simulation, the slope is constituted by homogenous ground. The foundation is considered as rigid/hard; therefore, the loading is made by the application of the vertical strengths on the nodes which represent the contact between the foundation and the ground. 

Keywords: Slope, shallow foundation, numeric method, FLAC 2D.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1124583

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206

References:


[1] DTU 13.12, le document technique unifié 13.12 (référence AFNOR DTU P11-711) de mars 1988.
[2] FASCICULE 62, titre V, Règle Techniques de conception et calcul des fondations des ouvrages de génie civil, CCTG. Applicable aux marchés publics de travaux, ministère de l’équipement ,1993.
[3] Billaux, Cundall (1993), Differnces finies explicites.
[4] Numerical methods in geotechnical engineering. Edited by Desai1 C. S. and Christian J. T. McGraw-Hill Book Company, 1977. No. of Pages: 783.
[5] Cundall. P.A (Fastlagrangian analysis of continua), version 4.0 Attics Consulting Group Inc. (1992).
[6] Hart. R, Cundall. P. A “Microcomputer Programs for Explicit Numerical Analysis in Geotechnical Engineering (in Russian),” Engr. for Energy J. (Proceedings of the International Seminar on Numerical Methods in Geomechanics), 7, 9-13 (July 1992).
[7] Hamadi. K, Modaressi. A, Darve. F, Lab MSS.M AT, école centrale de Paris, Lab sols, solides structures (L3S), / Analyse numérique de la stabilité matérielle d’une fondation superficielle au bord d’un talus; XX IIeme.Rencontre AUGC- Ville & Génie civil.
[8] ITASCA 2005. Consulting group, Inc. FLAC (Fast lagrangiananalysis of continua). Version 5. Minneapolis, MN, USA.
[9] Darve. F, Chau. B (1987). «In constitutive instabilities in incrementallynon-linear modeling. Constitutive laws for engineering materials». Theory and applications. Desail. C.S, Gallagher G.H(Eds.), p. 301-310.
[10] Mestat. P (Lcpc), Yvon. R, Ecole centrale de nantes, méthodologie de détermination des paramètres pour la loi de comportement élastoplastique et simulation d’essais de mécanique des sols, Edition 2001.
[11] Magnan. J.P, Mestat. P, (laboratoire Central des Ponts et Chaussées (LCPC)-Une Perspective Historique Sur Les Modèles Utilises En Mécaniques Des Sols.
[12] André.Z Comportement mécanique des matériaux/ élasticité et plasticité, Hermès 1995.N°98, 1er trimestre 2002.