Search results for: uniform temperature.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2841

Search results for: uniform temperature.

2691 An Examination and Validation of the Theoretical Resistivity-Temperature Relationship for Conductors

Authors: Fred Lacy

Abstract:

Electrical resistivity is a fundamental parameter of metals or electrical conductors. Since resistivity is a function of temperature, in order to completely understand the behavior of metals, a temperature dependent theoretical model is needed. A model based on physics principles has recently been developed to obtain an equation that relates electrical resistivity to temperature. This equation is dependent upon a parameter associated with the electron travel time before being scattered, and a parameter that relates the energy of the atoms and their separation distance. Analysis of the energy parameter reveals that the equation is optimized if the proportionality term in the equation is not constant but varies over the temperature range. Additional analysis reveals that the theoretical equation can be used to determine the mean free path of conduction electrons, the number of defects in the atomic lattice, and the ‘equivalent’ charge associated with the metallic bonding of the atoms. All of this analysis provides validation for the theoretical model and provides insight into the behavior of metals where performance is affected by temperatures (e.g., integrated circuits and temperature sensors).

Keywords: Callendar–van Dusen, conductivity, mean free path, resistance temperature detector, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
2690 Influence of Temperature Variations on Calibrated Cameras

Authors: Peter Podbreznik, Božidar Potocnik

Abstract:

The camera parameters are changed due to temperature variations, which directly influence calibrated cameras accuracy. Robustness of calibration methods were measured and their accuracy was tested. An error ratio due to camera parameters change with respect to total error originated during calibration process was determined. It pointed out that influence of temperature variations decrease by increasing distance of observed objects from cameras.

Keywords: camera calibration, perspective projection matrix, epipolar geometry, temperature variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
2689 Sensitivity Analysis for Direction of Arrival Estimation Using Capon and Music Algorithms in Mobile Radio Environment

Authors: Mustafa Abdalla, Khaled A. Madi, Rajab Farhat

Abstract:

An array antenna system with innovative signal processing can improve the resolution of a source direction of arrival (DoA) estimation. High resolution techniques take the advantage of array antenna structures to better process the incoming waves. They also have the capability to identify the direction of multiple targets. This paper investigates performance of the DOA estimation algorithm namely; Capon and MUSIC on the uniform linear array (ULA). The simulation results show that in Capon and MUSIC algorithm the resolution of the DOA techniques improves as number of snapshots, number of array elements, signal-to-noise ratio and separation angle between the two sources θ increases.

Keywords: Antenna array, Capon, MUSIC, Direction-of-arrival estimation, signal processing, uniform linear arrays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
2688 Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M

Authors: A. Yönetken, A. Erol, A. Yakar, G. Peşmen

Abstract:

The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.

Keywords: Composite, Electroless, Nickel plating, Powder metallurgy, Sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
2687 Modeling of Radiofrequency Nerve Lesioning in Inhomogeneous Media

Authors: Nour Ismail, Sahar El Kardawy, Bassant Badwy

Abstract:

Radiofrequency (RF) lesioning of nerves have been commonly used to alleviate chronic pain, where RF current preventing transmission of pain signals through the nerve by heating the nerve causing the pain. There are some factors that affect the temperature distribution and the nerve lesion size, one of these factors is the inhomogeneities in the tissue medium. Our objective is to calculate the temperature distribution and the nerve lesion size in an inhomogeneous medium surrounding the RF electrode. A two 3-D finite element models are used to compare the temperature distribution in the homogeneous and inhomogeneous medium. Also the effect of temperature-dependent electric conductivity on maximum temperature and lesion size is observed. Results show that the presence of an inhomogeneous medium around the RF electrode has a valuable effect on the temperature distribution and lesion size. The dependency of electric conductivity on tissue temperature increased lesion size.

Keywords: Finite element model, nerve lesioning, pain relief, radiofrequency lesion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
2686 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor is embedded in composite material to detect and monitor the damage that occurs in composite structures. In this paper, we deal with the mode-Ι delamination to determine the material strength to crack propagation, using the coupling mode theory and T-matrix method to simulate the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test is modeled in FEM to determine the longitudinal strain. Two models are implemented, the first is the global half model, and the second is the sub-model to represent the FBGs with higher refined mesh. This method can simulate damage in composite structures and converting strain to a wavelength shifting in the FBG spectrum.

Keywords: Fiber Bragg grating, Delamination detection, DCB, FBG spectrum, Structure health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6555
2685 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the point specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: Milling process, rotational speed, Artificial Neural Networks, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
2684 Experimental Analysis of Mechanical Behavior under the Effect of Temperature Frequency

Authors: A. Nedjar, S. Aguib, M. Meloussi, T. Djedid, A. Khebli, R. Harhout, L. Kobzili, N. Chikh, M. Tourab

Abstract:

Finding the mechanical properties of magnetorheological elastomers (MREs) is fundamental to create smart materials and devices with desired properties and functionalities. The MREs properties, in shear mode, have been extensively investigated, but these have been less exploited with frequency-temperature dependence. In this article, we studied the performance of MREs with frequency-temperature dependence. The elastic modulus, loss modulus and loss factor of MREs were studied under different temperature values; different values of the magnetic field and different values of the frequency. The results found showed the interest of these active materials in different industrial sectors.

Keywords: Magnetorheological elastomer, mechanical behavior, frequency, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169
2683 Investigation on Choosing the Suitable Geometry of the Solar Air Heater to Certain Conditions

Authors: Abdulrahman M. Homadi

Abstract:

This study focuses on how to control the outlet temperature of a solar air heater in a way simpler than the existing methods. In this work, five cases have been studied by using ANSYS Fluent based on a CFD numerical method. All the cases have been simulated by utilizing the same criteria and conditions like the temperature, materials, areas except the geometry. The case studies are conducted in Little Rock (LR), AR, USA during the winter time supposedly on 15th of December. A fresh air that is flowing with a velocity of 0.5 m/s and a flow rate of 0.009 m3/s. The results prove the possibility of achieving a controlled temperature just by changing the geometric shape of the heater. This geometry guarantees that the absorber plate always has a normal component of the solar radiation at any time during the day. The heater has a sectarian shape with a radius of 150 mm where the outlet temperature remains almost constant for six hours.

Keywords: Solar energy, air heater, control of temperature, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
2682 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites

Authors: M. R. Haboğlu, A. Kurşun, Ş. Aksoy, H. Aykul, N. B. Bektaş

Abstract:

Athermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s, and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.

Keywords: Laminated Composites, Thermo Elastic Stress, Finite Element Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
2681 A Single-chip Proportional to Absolute Temperature Sensor Using CMOS Technology

Authors: AL.AL, M. B. I. Reaz, S. M. A. Motakabber, Mohd Alauddin Mohd Ali

Abstract:

Nowadays it is a trend for electronic circuit designers to integrate all system components on a single-chip. This paper proposed the design of a single-chip proportional to absolute temperature (PTAT) sensor including a voltage reference circuit using CEDEC 0.18m CMOS Technology. It is a challenge to design asingle-chip wide range linear response temperature sensor for many applications. The channel widths between the compensation transistor and the reference transistor are critical to design the PTAT temperature sensor circuit. The designed temperature sensor shows excellent linearity between -100°C to 200° and the sensitivity is about 0.05mV/°C. The chip is designed to operate with a single voltage source of 1.6V.

Keywords: PTAT, single-chip circuit, linear temperature sensor, CMOS technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3433
2680 Study of Effective Moisture Diffusivity of Oak Acorn

Authors: Habibeh Nalbandi, Sadegh Seiiedlou, Hamid R. Ghasemzadeh, Naser Hamdami

Abstract:

The purpose of present work was to study the drying kinetics of whole acorn and its kernel at different drying air temperatures and their effective moisture diffusivity. The results indicated that the drying time of whole acorn was 442, 206 and 188 min at the air temperature of 65, 75 and 85ºC, respectively. At the same temperatures, the drying time of kernel was 131, 56 and 76min. The results showed that the effect of drying air temperature increasing on the drying time reduction could not be significant on acorn drying at all conditions. The effective moisture diffusivity of whole acorn and kernel increased with increasing air temperature from 65 to 75ºC. However more air temperature increasing, led to decreasing this property of acorn kernel. The critical temperature of acorn drying was about 75°C in which acorn kernel had the highest effective moisture diffusivity.

Keywords: Critical temperature, Drying kinetics, Moisture diffusivity, Oak acorn.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
2679 Role and Effect of Temperature on LPG Sweetening Process

Authors: Ali Samadi Afshar, Sayed Reaza Hashemi

Abstract:

In the gas refineries of Iran-s South Pars Gas Complex, Sulfrex demercaptanization process is used to remove volatile and corrosive mercaptans from liquefied petroleum gases by caustic solution. This process consists of two steps. Removing low molecular weight mercaptans and regeneration exhaust caustic. Some parameters such as LPG feed temperature, caustic concentration and feed-s mercaptan in extraction step and sodium mercaptide content in caustic, catalyst concentration, caustic temperature, air injection rate in regeneration step are effective factors. In this paper was focused on temperature factor that play key role in mercaptans extraction and caustic regeneration. The experimental results demonstrated by optimization of temperature, sodium mercaptide content in caustic because of good oxidation minimized and sulfur impurities in product reduced.

Keywords: Caustic regeneration, demercaptanization, LPG sweetening, mercaptan extraction, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5989
2678 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.

Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
2677 Long Term Variability of Temperature in Armenia in the Context of Climate Change

Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim

Abstract:

The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961- 2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5°C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.

Keywords: Air temperature, long-term variability, trend, climate change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
2676 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System

Authors: Shengqi Yu, Jinwei Zhao

Abstract:

This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.

Keywords: Time base circuit, automatic control, zero-crossing trigger, temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
2675 Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures

Authors: A. A. Amer, H. M. Gad, I. A. Ibrahim, S. I. Abdel-Mageed, T. M. Farag

Abstract:

This paper represents an experimental study of LPG diffusion flame at elevated preheated air temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Five air to fuel mass ratios of 15, 20, 30, 40 and 50 were also studied. The effect of preheated air temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the preheated air temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the preheated air temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the preheated air temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively.

Keywords: Preheated air temperature, air swirler, flame length, emission index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
2674 High-Temperature Corrosion of Weldment of Fe-2%Mn-0.5%Si Steel in N2/H2O/H2S-Mixed Gas

Authors: Sang Hwan Bak, Min Jung Kim, Dong Bok Lee

Abstract:

Fe-2%Mn-0.5%Si-0.2C steel was welded and corroded at 600, 700 and 800oC for 20 h in 1 atm of N2/H2S/H2O-mixed gas in order to characterize the high-temperature corrosion behavior of the welded joint. Corrosion proceeded fast and almost linearly. It increased with an increase in the corrosion temperature. H2S formed FeS owing to sulfur released from H2S. The scales were fragile and nonadherent.

Keywords: Fe-Mn-Si Steel, Corrosion, Welding, Sulfidation, H2S Gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
2673 Time Independent Behavior of Tomato Paste

Authors: A. Heidarinasab, V. Moghaddam Nansa

Abstract:

This paper deals with rheological behavior of tomato paste from the view point of time independent properties inclusive of processing variables such as sample temperature which influence on rheological properties as well as breaking temperature and concentration which beside the rheological properties, influence on the quality of final product. With this aim 10 tomato paste samples at various concentrations (17-25%) and breaking temperatures (65- 85 C o ) have been produced. The experimental results showed tomato paste behaves as a non-Newtonian semi-fluid which follows power law model that consistency coefficient (K) is supposed function of breaking temperature, concentration and sample temperature with consideration to superimpose function.

Keywords: Breaking temperature, Concentration, Power law, Rheology, Time independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
2672 Prediction of the Rear Fuselage Temperature with Radiation Shield

Authors: Kyung Joo Yi, Seung Wook Baek, Sung Nam Lee, Man Young Kim, Won Cheol Kim, Gun Yung Go

Abstract:

In order to enhance the aircraft survivability, the infrared signatures emitted by hot engine parts should be determined exactly. For its reduction it is necessary for the rear fuselage temperature to be decreased. In this study, numerical modeling of flow fields and heat transfer characteristics of an aircraft nozzle is performed and its temperature distribution along each component wall is predicted. The radiation shield is expected to reduce the skin temperature of rear fuselage. The effect of material characteristic of radiation shield on the heat transfer is also investigated. Through this numerical analysis, design parameters related to the susceptibility of aircraft are examined.

Keywords: Infrared signature, Nozzle flow, Radiation shield, Rear fuselage temperature, Susceptibility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
2671 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
2670 An Experimental Study on Autoignition of Wood

Authors: Tri Poespowati

Abstract:

Experiments were conducted to characterize fire properties of wood exposed to the certain external heat flux and under variety of wood moisture content. Six kinds of Indonesian wood: keruing, sono, cemara, kamper, pinus, and mahoni were exposed to radiant heat from a conical heater, result in appearance of a stable flame on the wood surface caused by spontaneous ignition. A thermocouple K-type was used to measure the wood surface temperature. Temperature histories were recorded throughout each experiment at 1 s intervals using a TC-08. Data of first ignition time and temperature, end ignition time and temperature, and charring rate have been successfully collected. It was found that the ignition temperature and charring rate depend on moisture content of wood.

Keywords: Fire properties, moisture content, wood, charring rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2669 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach

Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman

Abstract:

The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.

Keywords: AA6061, density, DOE, hot extrusion, microhardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
2668 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load

Authors: M. Khoukhi

Abstract:

Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.

Keywords: Operating temperature, polystyrene insulation, thermal conductivity, cooling load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
2667 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow

Authors: Vai Kuong Sin

Abstract:

Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.

Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
2666 Demulsification of Water-in-Oil Emulsions by Microwave Heating Technology

Authors: Abdurahman H. Nour, Rosli M. Yunus, Azhary. H. Nour

Abstract:

The mechanism of microwave heating is essentially that of dielectric heating. After exposing the emulsion to the microwave Electromagnetic (EM) field, molecular rotation and ionic conduction due to the penetration of (EM) into the emulsion are responsible for the internal heating. To determine the capability of microwave technology in demulsification of crude oil emulsions, microwave demulsification method was applied in a 50-50 % and 20- 80 % water-in-oil emulsions with microwave exposure time varied from 20-180 sec. Transient temperature profiles of water-in-oil emulsions inside a cylindrical container were measured. The temperature rise at a given location was almost horizontal (linear). The average rates of temperature increase of 50-50 % and 20-80 % water-in-oil emulsions are 0.351 and 0.437 oC/sec, respectively. The rate of temperature increase of emulsions decreased at higher temperature due to decreasing dielectric loss of water. These results indicate that microwave demulsification of water-in-oil emulsions does not require chemical additions. Microwave has the potential to be used as an alternative way in the demulsification process.

Keywords: Demulsification, temperature profile, emulsion.Microwave heating, dielectric, volume rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3729
2665 Influence of Technology Parameters on Properties of AA6061/SiC Composites Produced By Kobo Method

Authors: J. Wozniak, M. Kostecki, K. Broniszewski, W. Bochniak, A. Olszyna

Abstract:

The influence of extrusion parameters on surface quality and properties of AA6061+x% vol. SiC (x = 0; 2,5; 5; 7,5;10) composites was discussed in this paper. The averages size of AA6061 and SiC particles were 10.6 μm and 0.42 μm, respectively. Two series of composites (I - compacts were preheated at extrusion temperature through 0.5 h and cooled by water directly after process; II - compacts were preheated through 3 hours and were not cooled) were consolidated via powder metallurgy processing and extruded by KoBo method. High values of density for both series of composites were achieved. Better surface quality was observed for II series of composites. Moreover, for these composites lower (compared to I series) but more uniform strength properties over the cross-section of the bar were noticed. Microstructure and Young-s modulus investigations were made.

Keywords: aluminum alloy, extrusion, metal matrix composites, microstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
2664 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux and the one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: Aerodynamic heating, Heat conduction, Numerical simulation, Supersonic flight, Launch vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
2663 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978
2662 Study of Currents and Temperature of Induced Spur Gear using 2d Simulation

Authors: N. Barka, P. Bocher, A. Chebak, J. Brousseau, D. S. Ramdenee

Abstract:

This paper presents the study of induced currents and temperature distribution in gear heated by induction process using 2D finite element (FE) model. The model is developed by coupling Maxwell and heat transfer equations into a multi-physics model. The obtained results allow comparing the medium frequency (MF) and high frequency (HF) cases and the effect of machine parameters on the evolution of induced currents and temperature during heating. The sensitivity study of the temperature profile is conducted and the case hardness is predicted using the final temperature profile. These results are validated using tests and give a good understanding of phenomena during heating process.

Keywords: 2D model, induction heating, spur gear, induced currents, experimental validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616