Search results for: modal damping
215 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas
Authors: J. Szolomicki, H. Golasz-Szolomicka
Abstract:
The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.
Keywords: Core structure, damping systems, high-rise buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020214 STATCOM based Damping Controller in Power Systems for Enhance the Power System Stability
Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy
Abstract:
This paper describes the power-system stability improvement by a static synchronous compensator (STATCOM) based damping controller with Differential evolution (DE) algorithm is used to find out the optimal controller parameters. The present study considered both local and remote signals with associated time delays. The performances of the proposed controllers have been compared with different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. To show the effectiveness and robustness of the proposed controller the Simulation results are presented under different disturbances and loading conditions.
Keywords: Controller Design, Differential Evolution Algorithm Static Synchronous Compensator, Time Delay, Power System Stability, Single Machine Infinite-bus Power System, Multi-Machine Power System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742213 Vibration Analysis of Gas Turbine SIEMENS 162MW - V94.2 Related to Iran Power Plant Industry in Fars Province
Authors: Omid A. Zargar
Abstract:
Vibration analysis of most critical equipment is considered as one of the most challenging activities in preventive maintenance. Utilities are heart of the process in big industrial plants like petrochemical zones. Vibration analysis methods and condition monitoring systems of these kinds of equipments are developed too much in recent years. On the other hand, there are too much operation factors like inlet and outlet pressures and temperatures that should be monitored. In this paper, some of the most effective concepts and techniques related to gas turbine vibration analysis are discussed. In addition, a gas turbine SIEMENS 162MW - V94.2 vibration case history related to Iran power industry in Fars province is explained. Vibration monitoring system and machinery technical specification are introduced. Besides, absolute and relative vibration trends, turbine and compressor orbits, Fast Fourier transform (FFT) in absolute vibrations, vibration modal analysis, turbine and compressor start up and shut down conditions, bode diagrams for relative vibrations, Nyquist diagrams and waterfall or three-dimensional FFT diagrams in startup and trip conditions are discussed with relative graphs. Furthermore, Split Resonance in gas turbines is discussed in details. Moreover, some updated vibration monitoring system, blade manufacturing technique and modern damping mechanism are discussed in this paper.
Keywords: Gas turbine, turbine compressor, vibration data collector, utility, condition monitoring, non-contact probe, Relative Vibration, Absolute Vibration, Split Resonance, Time Wave Form (TWF), Fast Fourier transform (FFT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3682212 Application of STATCOM-SMES Compensator for Power System Dynamic Performance Improvement
Authors: Reza Sedaghati, Mojtaba Hakimzadeh, Mohammad Hasan Raouf, Mostafa Mirzadeh
Abstract:
Nowadays the growth of distributed generation within the bulk power system is feasible by using the optimal control of the transmission lines power flow. Static Synchronous Compensators (STATCOM) is effective for improving voltage stability but it can only exchange reactive power with the power grid. The integration of Superconducting Magnetic Energy Storage (SMES) with a STATCOM can extend the traditional STATCOM capabilities to four-quadrant bulk power system power flow control and providing exchange both the active and reactive power related to the STATCOM with the ac network. This paper shows how the SMES system can be connected to the ac system via the DC bus of a STATCOM and also analyzes how the integration of STATCOM and SMES allows the bus voltage regulation and power oscillation damping (POD) to be achieved simultaneously. The dynamic performance of the integrated STATCOM-SMES is evaluated through simulation by using PSCAD/EMTDC software and the compensation effectiveness of this integrated compensator is shown.
Keywords: STATCOM-SMES compensator, Power Oscillation Damping (POD), stabilizing, signal, voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849211 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure
Authors: Yashar Haghighatfar, Shahrzad Mirhosseini
Abstract:
Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.
Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770210 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.
Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235209 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients
Authors: Khaled M. EL-Naggar
Abstract:
Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.Keywords: Optimization, estimation, synchronous, machine, crow search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668208 Thermal Stability Boundary of FG Panel under Aerodynamic Load
Authors: Sang-Lae Lee, Ji-Hwan Kim
Abstract:
In this study, it is investigated the stability boundary of Functionally Graded (FG) panel under the heats and supersonic airflows. Material properties are assumed to be temperature dependent, and a simple power law distribution is taken. First-order shear deformation theory (FSDT) of plate is applied to model the panel, and the von-Karman strain- displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Further, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel and Rayleigh damping coefficient is used to present the structural damping. In order to find a critical value of the speed, linear flutter analysis of FG panels is performed. Numerical results are compared with the previous works, and present results for the temperature dependent material are discussed in detail for stability boundary of the panel with various volume fractions, and aerodynamic pressures.Keywords: Functionally graded panels, Linear flutter analysis, Supersonic airflows, Temperature dependent material property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595207 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics
Authors: Nader Ghareeb, R¨udiger Schmidt
Abstract:
Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.Keywords: Finite element analysis, super-element, state-space model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829206 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories
Authors: Haj Najafi Leila, Tehranizadeh Mohsen
Abstract:
Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.
Keywords: Dependency, story-cost, cost modes, engineering demand parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019205 Application of Genetic Algorithm for FACTS-based Controller Design
Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel
Abstract:
In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..
Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546204 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift
Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard
Abstract:
Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66% and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.
Keywords: Floor lift, human robot interaction, admittance controller, variable admittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59203 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning
Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto
Abstract:
In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794202 An Investigation on the Accuracy of Nonlinear Static Procedures for Seismic Evaluation of Buckling-restrained Braced Frames
Authors: An Hong Nguyen, Chatpan Chintanapakdee, Toshiro Hayashikawa
Abstract:
Presented herein is an assessment of current nonlinear static procedures (NSPs) for seismic evaluation of bucklingrestrained braced frames (BRBFs) which have become a favorable lateral-force resisting system for earthquake resistant buildings. The bias and accuracy of modal, improved modal pushover analysis (MPA, IMPA) and mass proportional pushover (MPP) procedures are comparatively investigated when they are applied to BRBF buildings subjected to two sets of strong ground motions. The assessment is based on a comparison of seismic displacement demands such as target roof displacements, peak floor/roof displacements and inter-story drifts. The NSP estimates are compared to 'exact' results from nonlinear response history analysis (NLRHA). The response statistics presented show that the MPP procedure tends to significantly overestimate seismic demands of lower stories of tall buildings considered in this study while MPA and IMPA procedures provide reasonably accurate results in estimating maximum inter-story drift over all stories of studied BRBF systems.Keywords: Buckling-restrained braced frames, nonlinearresponse history analysis, nonlinear static procedure, seismicdemands.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959201 Power System Stability Improvement by Simultaneous Tuning of PSS and SVC Based Damping Controllers Employing Differential Evolution Algorithm
Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy
Abstract:
Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.
Keywords: Differential Evolution Algorithm, Power System Stability, Power System Stabilizer, Static Var Compensator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340200 MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures
Authors: Murat Dicleli, Ali Salem Milani
Abstract:
In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multidirectional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs.Keywords: Seismic, isolation, damper, adaptive stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000199 Power System Damping Using Hierarchical Fuzzy Multi- Input Power System Stabilizer and Static VAR Compensator
Authors: Mohammad Hasan Raouf, Ebrahim Rasooli Anarmarzi, Hamid Lesani, Javad Olamaei
Abstract:
This paper proposes the application of a hierarchical fuzzy system (HFS) based on multi-input power system stabilizer (MPSS) and also Static Var Compensator (SVC) in multi-machine environment.The number of rules grows exponentially with the number of variables in a conventional fuzzy logic system. The proposed HFS method is developed to solve this problem. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. In fact, by using HFS the total number of involved rules increases only linearly with the number of input variables. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type Power system stabilizer (PSS). Phasor model of SVC is described and used in this paper. The performances of MPSS, Conventional power system stabilizer (CPSS), hierarchical Fuzzy Multi-input Power System Stabilizer (HFMPSS) and the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. By using digital simulations the comparative study is illustrated. It can be seen that the proposed PSS is performing satisfactorily within the whole range of disturbances.
Keywords: Power system stabilizer (PSS), hierarchical fuzzysystem (HFS), Static VAR compensator (SVC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527198 PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO
Authors: Rajendraprasad Narne, P. C. Panda
Abstract:
In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.
Keywords: Advanced adaptive particle swarm optimization, Coordinated design, Power system stabilizer, Real-time implementation, static var compensator, Thyristor controlled series capacitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591197 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.
Keywords: Elasto-aerodynamic lubrication, Air foil bearing, Steady-state deformation, Dynamic deformation, Stiffness and damping coefficients, Perturbation method, Fluid-structure interaction, Galerk infinite element method, Finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757196 Time Effective Structural Frequency Response Testing with Oblique Impact
Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi
Abstract:
Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.Keywords: Frequency response function, impact testing, modal analysis, oblique angle, oblique impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932195 Closed form Delay Model for on-Chip VLSIRLCG Interconnects for Ramp Input for Different Damping Conditions
Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar
Abstract:
Fast delay estimation methods, as opposed to simulation techniques, are needed for incremental performance driven layout synthesis. On-chip inductive effects are becoming predominant in deep submicron interconnects due to increasing clock speed and circuit complexity. Inductance causes noise in signal waveforms, which can adversely affect the performance of the circuit and signal integrity. Several approaches have been put forward which consider the inductance for on-chip interconnect modelling. But for even much higher frequency, of the order of few GHz, the shunt dielectric lossy component has become comparable to that of other electrical parameters for high speed VLSI design. In order to cope up with this effect, on-chip interconnect has to be modelled as distributed RLCG line. Elmore delay based methods, although efficient, cannot accurately estimate the delay for RLCG interconnect line. In this paper, an accurate analytical delay model has been derived, based on first and second moments of RLCG interconnection lines. The proposed model considers both the effect of inductance and conductance matrices. We have performed the simulation in 0.18μm technology node and an error of as low as less as 5% has been achieved with the proposed model when compared to SPICE. The importance of the conductance matrices in interconnect modelling has also been discussed and it is shown that if G is neglected for interconnect line modelling, then it will result an delay error of as high as 6% when compared to SPICE.Keywords: Delay Modelling; On-Chip Interconnect; RLCGInterconnect; Ramp Input; Damping; VLSI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049194 Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault
Authors: V. S. Meenakshi, G. Padmavathi
Abstract:
Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.Keywords: Biometric Template Security, Crypto Biometric Systems, Hardening Fuzzy Vault, Min-Entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160193 Efficient Study of Substrate Integrated Waveguide Devices
Authors: J. Hajri, H. Hrizi, N. Sboui, H. Baudrand
Abstract:
This paper presents a study of SIW circuits (Substrate Integrated Waveguide) with a rigorous and fast original approach based on Iterative process (WCIP). The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS.
Keywords: Convergence study, HFSS, Modal decomposition, SIW Circuits, WCIP Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028192 Frequency Response of Complex Systems with Localized Nonlinearities
Authors: E. Menga, S. Hernandez
Abstract:
Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.Keywords: Frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316191 A New Approach Defining Angular DMD Using Near Field Aperturing
Authors: S. Al-Sowayan, K. L. Lear
Abstract:
A new technique to quantify the differential mode delay (DMD) in multimode fiber (MMF) is been presented. The technique measures DMD based on angular launch and measurements of the difference in modal delay using variable apertures at the fiber face. The result of the angular spatial filtering revealed less excitation of higher order modes when the laser beam is filtered at higher angles. This result would indicate that DMD profiles would experience a data pattern dependency.
Keywords: Fiber measurements, Fiber optic communications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634190 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability
Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi
Abstract:
The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.
Keywords: Almost strictly positive real, doubly-fed induction generator, simple adaptive control, subsynchronous oscillations, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128189 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.
Keywords: Сlassification accuracy, fusion solution, total error rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976188 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis
Authors: Liliia N. Butymova, Vladimir Ya Modorskii
Abstract:
To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.
Keywords: Aeroelasticity, labyrinth packings, oscillation phase shift, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591187 Dynamic Analysis of Reduced Order Large Rotating Vibro-Impact Systems
Authors: Miroslav Byrtus
Abstract:
Large rotating systems, especially gear drives and gearboxes, occur as parts of many mechanical devices transmitting the torque with relatively small loss of power. With the increased demand for high speed machinery, mathematical modeling and dynamic analysis of gear drives gained importance. Mathematical description of such mechanical systems is a complex task evolving for several decades. In gear drive dynamic models, which include flexible shafts, bearings and gearing and use the finite elements, nonlinear effects due to gear mesh and bearings are usually ignored, for such models have large number of degrees of freedom (DOF) and it is computationally expensive to analyze nonlinear systems with large number of DOF. Therefore, these models are not suitable for simulation of nonlinear behavior with amplitude jumps in frequency response. The contribution uses a methodology of nonlinear large rotating system modeling which is based on degrees of freedom (DOF) number reduction using modal synthesis method (MSM). The MSM enables significant DOF number reduction while keeping the nonlinear behavior of the system in a specific frequency range. Further, the MSM with DOF number reduction is suitable for including detail models of nonlinear couplings (mainly gear and bearing couplings) into the complete gear drive models. Since each subsystem is modeled separately using different FEM systems, it is advantageous to parameterize models of subsystems and to use the parameterization for optimization of chosen design parameters. Final complex model of gear drive is assembled in MATLAB and MATLAB tools are used for dynamical analysis of the nonlinear system. The contribution is further focused on developing of a methodology for investigation of behavior of the system by Nonlinear Normal Modes with combination of the MSM using numerical continuation method. The proposed methodology will be tested using a two-stage gearbox including its housing.
Keywords: Vibro-impact system, rotating system, gear drive, modal synthesis method, numerical continuation method, periodic solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402186 Simulation of an Auto-Tuning Bicycle Suspension Fork with Quick Releasing Valves
Authors: Y. C. Mao, G. S. Chen
Abstract:
Bicycle configuration is not as large as those of motorcycles or automobiles, while it indeed composes a complicated dynamic system. People-s requirements on comfortability, controllability and safety grow higher as the research and development technologies improve. The shock absorber affects the vehicle suspension performances enormously. The absorber takes the vibration energy and releases it at a suitable time, keeping the wheel under a proper contact condition with road surface, maintaining the vehicle chassis stability. Suspension design for mountain bicycles is more difficult than that of city bikes since it encounters dynamic variations on road and loading conditions. Riders need a stiff damper as they exert to tread on the pedals when climbing, while a soft damper when they descend downhill. Various switchable shock absorbers are proposed in markets, however riders have to manually switch them among soft, hard and lock positions. This study proposes a novel design of the bicycle shock absorber, which provides automatic smooth tuning of the damping coefficient, from a predetermined lower bound to theoretically unlimited. An automatic quick releasing valve is involved in this design so that it can release the peak pressure when the suspension fork runs into a square-wave type obstacle and prevent the chassis from damage, avoiding the rider skeleton from injury. This design achieves the automatic tuning process by innovative plunger valve and fluidic passage arrangements without any electronic devices. Theoretical modelling of the damper and spring are established in this study. Design parameters of the valves and fluidic passages are determined. Relations between design parameters and shock absorber performances are discussed in this paper. The analytical results give directions to the shock absorber manufacture.
Keywords: Modelling, Simulation, Bicycle, Shock Absorber, Damping, Releasing Valve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890