Search results for: initial lateral stiffness
1428 Comprehensive Study on the Linear Hydrodynamic Analysis of a Truss Spar in Random Waves
Authors: Roozbeh Mansouri, Hassan Hadidi
Abstract:
Truss spars are used for oil exploitation in deep and ultra-deep water if storage crude oil is not needed. The linear hydrodynamic analysis of truss spar in random sea wave load is necessary for determining the behaviour of truss spar. This understanding is not only important for design of the mooring lines, but also for optimising the truss spar design. In this paper linear hydrodynamic analysis of truss spar is carried out in frequency domain. The hydrodynamic forces are calculated using the modified Morison equation and diffraction theory. Added mass and drag coefficients of truss section computed by transmission matrix and normal acceleration and velocity component acting on each element and for hull section computed by strip theory. The stiffness properties of the truss spar can be separated into two components; hydrostatic stiffness and mooring line stiffness. Then, platform response amplitudes obtained by solved the equation of motion. This equation is non-linear due to viscous damping term therefore linearised by iteration method [1]. Finally computed RAOs and significant response amplitude and results are compared with experimental data.
Keywords: Truss Spar, Hydrodynamic analysis, Wave spectrum, Frequency Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24171427 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach
Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin
Abstract:
Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.
Keywords: Reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8091426 A New Direct Updating Method for Undamped Structural Systems
Authors: Yongxin Yuan, Jiashang Jiang
Abstract:
A new numerical method for simultaneously updating mass and stiffness matrices based on incomplete modal measured data is presented. By using the Kronecker product, all the variables that are to be modified can be found out and then can be updated directly. The optimal approximation mass matrix and stiffness matrix which satisfy the required eigenvalue equation and orthogonality condition are found under the Frobenius norm sense. The physical configuration of the analytical model is preserved and the updated model will exactly reproduce the modal measured data. The numerical example seems to indicate that the method is quite accurate and efficient.
Keywords: Finite element model, model updating, modal data, optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14791425 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames
Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan
Abstract:
The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.
Keywords: Seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5271424 Myotonometry Method for Assessment Muscle Performance
Authors: Rusu Ligia, Cosma Germina, Lica Eliana, Marin Mihnea, Cernăianu Sorina, Copilusi Petre Cristian, Rusu Petre Florinel
Abstract:
The aim of this paper is to present the role of myotonometry in assessment muscle viscoelasticity by measurement of force index (IF) and stiffness (S) at thigh muscle groups. The results are used for improve the muscle training. The method is based on mechanic impulse on the muscle group, that involve a muscle response like acceleration, speed and amplitude curves. From these we have information about elasticity, stiffness beginning from mechanic oscillations of muscle tissue. Using this method offer the possibility for monitoring the muscle capacity for produce mechanic energy, that allows a efficiency of movement with a minimal tissue deformation.Keywords: assessment, infraspinatus syndrome, kinetic therapy, rehabilitation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21801423 One scheme of Transition Probability Evaluation
Authors: Alexander B. Bichkov, Alla A. Mityureva, Valery V. Smirnov
Abstract:
In present work are considered the scheme of evaluation the transition probability in quantum system. It is based on path integral representation of transition probability amplitude and its evaluation by means of a saddle point method, applied to the part of integration variables. The whole integration process is reduced to initial value problem solutions of Hamilton equations with a random initial phase point. The scheme is related to the semiclassical initial value representation approaches using great number of trajectories. In contrast to them from total set of generated phase paths only one path for each initial coordinate value is selected in Monte Karlo process.Keywords: Path integral, saddle point method, semiclassical approximation, transition probability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16051422 A Comparative Study on Seismic Provisions Made in UBC-1997 and Saudi Building Code for RC Buildings
Authors: S. Nazar, M. A. Ismaeil
Abstract:
This paper presents a comparative study of static analysis procedure for seismic performance based on UBC-1997 and SBC-301-2007(Saudi Arabia). These building codes define different ductility classes and corresponding response reduction factors based on material, configuration and detailing of reinforcements. Codes differ significantly in specifying the procedures to estimate base shear, drift and effective stiffness of structural members. One of the major improvements made in new SBC (based on IBC-2003) is ground motion parameters used for seismic design. In old SBC (based on UBC) maps have been based on seismic zones. However new SBC provide contour maps giving spectral response quantities. In this approach, a case study of RC frame building located in two different cities and with different ductility classes has been performed. Moreover, equivalent static method based on SBC-301 and UBC-1997 is used to explore the variation in results based on two codes, particularly design base shear, lateral loads and story drifts.
Keywords: Ductility Classes, Equivalent Static method, RC Frames, SBC-301-2007, Story drifts, UBC-1997.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41961421 Design of Rigid L- Shaped Retaining Walls
Authors: A. Rouili
Abstract:
Cantilever L-shaped walls are known to be relatively economical as retaining solution. The design starts by proportioning the wall dimensions for which the stability is checked for. A ratio between the lengths of the base and the stem, falling between 0.5 to 0.7 ensure in most case the stability requirements, however, the displacement pattern of the wall in terms of rotations and translations, and the lateral pressure profile, do not have the same figure for all wall’s proportioning, as it is usually assumed. In the present work the results of a numerical analysis are presented, different wall geometries were considered. The results show that the proportioning governs the equilibrium between the instantaneous rotation and the translation of the wall-toe, also, the lateral pressure estimation based on the average value between the at-rest and the active pressure, recommended by most design standards, is found to be not applicable for all walls.
Keywords: Cantilever wall, proportioning, numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94361420 The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames
Authors: David A. Roke, M. R. Hasan
Abstract:
Conventional concentrically-braced frame (CBF) systems have limited drift capacity before brace buckling and related damage leads to deterioration in strength and stiffness. Self-centering concentrically-braced frame (SC-CBF) systems have been developed to increase drift capacity prior to initiation of damage and minimize residual drift. SC-CBFs differ from conventional CBFs in that the SC-CBF columns are designed to uplift from the foundation at a specified level of lateral loading, initiating a rigid-body rotation (rocking) of the frame. Vertically-aligned post-tensioning bars resist uplift and provide a restoring force to return the SC-CBF columns to the foundation (self-centering the system). This paper presents a parametric study of different prototype buildings using SC-CBFs. The bay widths of the SC-CBFs have been varied in these buildings to study different geometries. Nonlinear numerical analyses of the different SC-CBFs are presented to illustrate the effect of frame geometry on the behavior and dynamic response of the SC-CBF system.Keywords: Earthquake resistant structures, nonlinear analysis, seismic analysis, self-centering structural systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191419 Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets
Authors: Suraka Bhattacharjee, Ranjan Chaudhury
Abstract:
The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own.Keywords: Generalized charge stiffness constant, charge coupling, effective Coulomb interaction, t-J-like models, momentum-space pairing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6151418 Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium
Authors: Ali Kheyroddin, Niloufar Mashhadiali, Frazaneh Kheyroddin
Abstract:
In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption.
Keywords: Braced tube, diagrid, framed tube, hexagrid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11201417 Fragility Assessment for Torsionally Asymmetric Buildings in Plan
Authors: S. Feli, S. Tavousi Tafreshi, A. Ghasemi
Abstract:
The present paper aims at evaluating the response of three-dimensional buildings with in-plan stiffness irregularities that have been subjected to two-way excitation ground motion records simultaneously. This study is broadly-based fragility assessment with greater emphasis on structural response at in-plan flexible and stiff sides. To this end, three type of three-dimensional 5-story steel building structures with stiffness eccentricities, were subjected to extensive nonlinear incremental dynamic analyses (IDA) utilizing Ibarra-Krawinkler deterioration models. Fragility assessment was implemented for different configurations of braces to investigate the losses in buildings with center of resisting (CR) eccentricities.
Keywords: Ibarra Krawinkler, fragility assessment, flexible and stiff side, center of resisting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15341416 Oriented Strandboard-GEOGYPTM Underlayment - A Novel Composite Flooring System
Authors: B. Noruziaan, A. Shvarzman, R. Leahy
Abstract:
An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.
Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18301415 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method
Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger
Abstract:
Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.
Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9761414 Influence of Inhomogeneous Wind Fields on the Aerostatic Stability of a Cable-Stayed Pedestrian Bridge without Backstays: Experiments and Numerical Simulations
Abstract:
Sightseeing glass bridges located in steep valley area are being built on a large scale owing to the development of tourism. Consequently, their aerostatic stability is seriously affected by the wind field characteristics created by strong wind and special terrain, such as wind speed and wind attack angle. For instance, a cable-stayed pedestrian bridge without backstays comprised of a 60-m cantilever girder and the glass bridge deck is located in an abrupt valley, acting as a viewing platform. The bridge’s nonlinear aerostatic stability was analyzed by the segmental model test and numerical simulation in this paper. Based on aerostatic coefficients of the main girder measured in wind tunnel tests, nonlinear influences caused by the structure and aerostatic load, inhomogeneous distribution of torsion angle along the bridge axis, and the influence of initial attack angle were analyzed by using the incremental double iteration method. The results show that the aerostatic response varying with speed shows an obvious nonlinearity, and the aerostatic instability mode is of the characteristic of space deformation of bending-twisting coupling mode. The vertical and torsional deformation of the main girder is larger than its lateral deformation, with the wind speed approaching the critical wind speed. The flow of negative attack angle will reduce the bridges’ critical stability wind speed, but the influence of the negative attack angle on the aerostatic stability is more significant than that of the positive attack angle. The critical wind speeds of torsional divergence and lateral buckling are both larger than 200 m/s; namely, the bridge will not occur aerostatic instability under the action of various wind attack angles.
Keywords: Aerostatic nonlinearity, cable-stayed pedestrian bridge, numerical simulation, nonlinear aerostatic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5751413 A Study on the Relation of Corporate Governance and Pricing for Initial Public Offerings
Authors: Chei-Chang Chiou, Sen-Wei Wang, Yu-Min Wang
Abstract:
The purpose of this study is to investigate the relationship between corporate governance and pricing for initial public offerings (IPOs). Empirical result finds that the prediction of pricing of IPOs with corporate governance added can have a rather higher degree of predicting accuracy than that of non governance added during the training and testing samples. Therefore, it can be observed that corporate governance mechanism can affect the pricing of IPOsKeywords: Artificial neural networks, corporate governance, initial public offerings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061412 Behavior of the Foundation of Bridge Reinforced by Rigid and Flexible Inclusions
Authors: T. Karech A. Noui, T. Bouzid
Abstract:
This article presents a comparative study by numerical analysis of the behavior of reinforcements of clayey soils by flexible columns (stone columns) and rigid columns (piles). The numerical simulation was carried out in 3D for an assembly of foundation, columns and a pile of a bridge. Particular attention has been paid to take into account the installation of the columns. Indeed, in practice, due to the compaction of the column, the soil around it sustains a lateral expansion and the horizontal stresses are increased. This lateral expansion of the column can be simulated numerically. This work represents a comparative study of the interaction between the soil on one side, and the two types of reinforcement on the other side, and their influence on the behavior of the soil and of the pile of a bridge.
Keywords: Piles, stone columns, interaction, foundation, settlement, consolidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10611411 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles
Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane
Abstract:
In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.Keywords: Autonomous vehicles, convoy, nonlinear control, nonlinear observer, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7261410 The Applicability of the Zipper Strut to Seismic Rehabilitation of Steel Structures
Authors: G. R. Nouri, H. Imani Kalesar, Zahra Ameli
Abstract:
Chevron frames (Inverted-V-braced frames or Vbraced frames) have seismic disadvantages, such as not good exhibit force redistribution capability and compression brace buckles immediately. Researchers developed new design provisions on increasing both the ductility and lateral resistance of these structures in seismic areas. One of these new methods is adding zipper columns, as proposed by Khatib et al. (1988) [2]. Zipper columns are vertical members connecting the intersection points of the braces above the first floor. In this paper applicability of the suspended zipper system to Seismic Rehabilitation of Steel Structures is investigated. The models are 3-, 6-, 9-, and 12-story Inverted-V-braced frames. In this case, it is assumed that the structures must be rehabilitated. For rehabilitation of structures, zipper column is used. The result of researches showed that the suspended zipper system is effective in case of 3-, 6-, and 9-story Inverted-V-braced frames and it would increase lateral resistance of structure up to life safety level. But in case of high-rise buildings (such as 12 story frame), it doesn-t show good performance. For solving this problem, the braced bay can consist of small “units" over the height of the entire structure, which each of them is a zipper-braced bay with a few stories. By using this method the lateral resistance of 12 story Inverted-V-braced frames is increased up to safety life level.Keywords: chevron-braced frames, suspended zipper frames, zipper frames, zipper columns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22201409 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.
Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9421408 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.
Keywords: Elasto-aerodynamic lubrication, Air foil bearing, Steady-state deformation, Dynamic deformation, Stiffness and damping coefficients, Perturbation method, Fluid-structure interaction, Galerk infinite element method, Finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27561407 On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations
Authors: R. B. Ogunrinde
Abstract:
This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.Keywords: Differential equations, Numerical, Initial value problem, Polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17721406 Simplified Analysis on Steel Frame Infill with FRP Composite Panel
Authors: HyunSu Seo, HoYoung Son, Sungjin Kim, WooYoung Jung
Abstract:
In order to understand the seismic behavior of steel frame structure with infill FRP composite panel, simple models for simulation on the steel frame with the panel systems were developed in this study. To achieve the simple design method of the steel framed structure with the damping panel system, 2-D finite element analysis with the springs and dashpots models was conducted in ABAQUS. Under various applied spring stiffness and dashpot coefficient, the expected hysteretic energy responses of the steel frame with damping panel systems we investigated. Using the proposed simple design method which decides the stiffness and the damping, it is possible to decide the FRP and damping materials on a steel frame system.
Keywords: Interface damping layer, steel frame, seismic, FRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411405 Towards Synthesis of Atropodiastereomeric Indolostilbenes Hybrids: A New Class of Oligostilbenoids
Authors: K. Ahmad, M. Suhaimi, Mohamad N. Azmi, K. Awang, Mohd A. Nafiah
Abstract:
The conceptually construction of axially chiral indolostilbenesi.eN-(2-{(E)-2-[2'-(1-Acetyl-1H-indol-2-yl)-3'chloro-4,4',6,6'-tetramethoxy[1,1'-biphenyl]-2yl]ethenyl}phenyl)acetamide and N-(2-{(E)-2-[2'-(1-Acetyl-1H-indol-2-yl)-3'-chloro-2,4',6,6'-tetramethoxy[1,1'-biphenyl]-4-yl]ethenyl}phenyl) acetamide are described in this paper. These structure, were obtained by the tactical combination of palladium-catalyzed coupling which produced 10-acetamido-3,5-dimethoxystilbene, follow by FeCl3-induced oxidative cyclization/dimerisation. All structures were unambiguously confirmed by 1D (1H, 13C) and 2D NMR experiment, (COSY, HMQC, HMBC) and mass spectrometry.
Keywords: Indolostilbene, FeCl3-oxidative cyclization, Oligostilbenooids, Oxidative cyclization/dimerization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15171404 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies
Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani
Abstract:
The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a) synthesizing such PTMDs for particular applications and b) evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.
Keywords: Active tuned mass damper, high-rise building, multi-frequency tuning, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291403 Vibration Analysis of the Gas Turbine Considering Dependency of Stiffness and Damping on Frequency
Authors: Hamed Jamshidi, Pooya Djamshidi
Abstract:
In this paper the complete rotor system including elastic shaft with distributed mass, allowing for the effects of oil film in bearings. Also, flexibility of foundation is modeled. As a whole this article is a relatively complete research in modeling and vibration analysis of rotor considering gyroscopic effect, damping, dependency of stiffness and damping coefficients on frequency and solving the vibration equations including these parameters. On the basis of finite element method and utilizing four element types including element of shaft, disk, bearing and foundation and using MATLAB, a computer program is written. So the responses in several cases and considering different effects are obtained. Then the results are compared with each other, with exact solutions and results of other papers.Keywords: Damping coefficients , Finite element method, Modeling , Rotor vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24891402 Optimization of Wood Fiber Orientation Angle in Outer Layers of Variable Stiffness Plywood Plate
Authors: J. Sliseris, K. Rocens
Abstract:
The new optimization method for fiber orientation angle optimization of symmetrical multilayer plates like plywood is proposed. Optimization method consists of seeking for minimal compliance by choosing appropriate fiber orientation angle in outer layers of flexural plate. The discrete values of fiber orientation angles are used in method. Optimization results of simply supported plate and multispan plate with uniformly distributed load are provided. Results show that stiffness could be increased up to 20% by changing wood fiber orientation angle in one or two outer layers.Keywords: Minimal compliance, flexural plate, plywood, discrete fiber angle optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19661401 Tuning Neurons to Interaural Intensity Differences Using Spike Timing-Dependent Plasticity
Authors: Bertrand Fontaine, Herbert Peremans
Abstract:
Mammals are known to use Interaural Intensity Difference (IID) to determine azimuthal position of high frequency sounds. In the Lateral Superior Olive (LSO) neurons have firing behaviours which vary systematicaly with IID. Those neurons receive excitatory inputs from the ipsilateral ear and inhibitory inputs from the contralateral one. The IID sensitivity of a LSO neuron is thought to be due to delay differences between both ears, delays due to different synaptic delays and to intensity-dependent delays. In this paper we model the auditory pathway until the LSO. Inputs to LSO neurons are at first numerous and differ in their relative delays. Spike Timing-Dependent Plasticity is then used to prune those connections. We compare the pruned neuron responses with physiological data and analyse the relationship between IID-s of teacher stimuli and IID sensitivities of trained LSO neurons.
Keywords: Interaural difference, lateral superior olive, spike time-dependent plasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771400 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium
Authors: M. M. Selim
Abstract:
The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.
Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10591399 Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis
Authors: Mahmoud Miri, Abdolreza Zare, Hossein Abbas zadeh
Abstract:
The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.
Keywords: Seismic behaviour, ordinary knee bracing frame, Chevron knee brace, behaviour factor, performance level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4255