Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets

Authors: Suraka Bhattacharjee, Ranjan Chaudhury

Abstract:

The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own.

Keywords: Generalized charge stiffness constant, charge coupling, effective Coulomb interaction, t-J-like models, momentum-space pairing.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3669269

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625

References:


[1] M.L. N´eel, Ann.Phys. 11, 232 (1936)
[2] N.F.Mott, “Metal-Insulator Transition”, Taylor and Francis, London, Second edition (1990)
[3] J.Hubbard, Proc.R.Soc.London A 276, 238 (1963)
[4] D.Rybicki, M.Jurkutat, S.Reichardt, C.Kapusta, J.Haase, Nature Communications 7, 11413 (2016)
[5] D.Chakraborty, C.Morice, C.P´epin, Phy.Rev.B 97, 214501 (2018)
[6] K.V.Mitsen, O.M.Ivanenko, Physics-Uspekhi 60, 402 (2017)
[7] M.Vojta, S.Sachdev, Phy.Rev.Lett. 83, 3916 (1999)
[8] A.Aharony, R.J.Birgeneau, A.Coniglio, M.A.Kastner, H.E.Stanley Phy.Rev.Lett. 60, 1330 (1988)
[9] R.J.Birgeneau, M.A.Kastner, A.Aharony, Z.Phys. B: Cond. Mat. 71, 57 (1998)
[10] F.C.Zhang, T.M.Rice, Phy.Rev.B 41, 7243 (1990)
[11] N.M.Plakida, R.Hayn, J.L.Richard, Phy.Rev.B 51, 16599 (1995)
[12] N.M.Plakida, Z.Phys.B 103, 383 (1997)
[13] G. Jackeli, N.M.Plakida, Theor.Math.Phys.114, 335 (1998)
[14] A.A.Vladimirov, D.Ihle, N.M.Plakida, Phys.Rev.B 80, 104425 (2009)
[15] A.A.Vladimirov, D.Ihle, N.M.Plakida, Phys.Rev.B 83, 024411 (2011)
[16] J.Kaczmarczyk, J.Spalek, T.Schickling, J.B¨unemann, Phy.Rev.B 88, 115127 (2013)
[17] D.J.Scalapino, “Handbook of High-Temperature Superconductivity”, edited by J.R.Schrieffer, J.S.Brooks, Chapter-XIII, Springer, NewYork (2007)
[18] H.C.Jiang, T.P.Devereaux, Science 365, 1424 (2019)
[19] M.Ogata, M.U.Luchini, S.Sorella, F.F.Assaad, Phys.Rev.Lett. 66, 2388 (1991)
[20] N.Kawakami, S.K. Yang, Phys.Rev.Lett. 65, 2309 (1990)
[21] B.Sciolla, A.Tokuno, S.Uchino, P.Barmettler, T.Giamarchi, C.Kollath, Phys.Rev.A 88, 063629 (2013)
[22] J.Sirker, A.Kl¨umper, Phys.Rev.B 66, 245102 (2002)
[23] S.Bhattacharjee, R.Chaudhury, Physica B 500, 133 (2016)
[24] S.Bhattacharjee, R.Chaudhury, J.Low Temp.Phys. 193, 21 (2018)
[25] R.Chaudhury, S.S.Jha, Pramana 22, 431 (1984); Y.A.Uspenskii, Sov.Phys. JETP 49, 822 (1979); V.L.Ginzburg, D.A.Kirzhnits, Phy.Rep. C4, 344 (1972)
[26] D.Poilblanc, Phy.Rev.B 44, 9562 (1991)
[27] J.Jakliˇc, P,Prelovˇsek, Phy. Rev. B 52, 6903 (1995)
[28] E.Blackburn, J.Chang, M.H¨ucker, A.T.Holmes, N.B.Christensen, R.Liang, D.A.Bonn, W.N.Hardy, U.R¨utt, O.Gutowski, M.V.Zimmermann, E.M.Forgan, S.M.Hayden, Phy.Rev.Lett. 110, 137004 (2013)
[29] E.Dagotto, A.Moreo, F.Ortolani, D.Poilblanc, J.Riera, Phy.Rev.B 45, 10741 (1992)
[30] D.Nakamura, Y.Imai, A.Maeda, I.Tsukada, J.Phys.Soc.Jpn. 81, 044709 (2012)
[31] R.Chaudhury, Theor.Math.Phys. 136, 1022 (2003)
[32] D.Volhardt, Rev.Mod.Phys. 56, 99 (1984); F.C.Zhang, T.M.Rice, Phys.Rev. B 37, 3759 (1988)
[33] W.Kohn, Phys.Rev. A 133, 171 (1964); D.J.Thouless, Phys.Rep. 13, 94 (1074); B.S.Shastry, B.Sutherland, Phys.Rev.Lett. 65, 243 (1990); P.A.Bares, G.Blatter, Phys.Rev.Lett. 64, 2567 (1990)
[34] R.Chaudhury, J.Phys.:Condens.Matter 19, 496203 (2007)
[35] V.N.Kotov, O.P.Sushkov, Phy.Rev. B 70, 195105 (2004)
[36] J.Leshen, M.Kavai, I.Giannakis, Y.Kaneko, Y.Tokura, S.Mukherjee, W.C.Lee, P.Ayanjian, Communication Physics 2, 36 (2019)
[37] T.Tohyama, S.Nagai, Y.Shibata, S.Maekawa, J.Low Temp. Phys. 117, 211 (1999)
[38] T.Tohyama, S.Nagai, Y.Shibata, S.Maekawa, Phys.Rev.B 82, 4910 (1999)
[39] N.W.Ashcroft, N.D.Mermin, “Solid State Physics”, chapter-XVII, Harcourt College Publishers (1976), Preprint (2015)
[40] V.L.Ginzburg, D.A.Kirzhnits, “High-Temperature Superconductivity”, by chapter-III, New York: Consultants Bureau (1982)
[41] G.F.Giuliani,G.Vignale, “Quantum Theory of the Electron liquid”, chapter-IV,V, Cambridge University Press (2005)
[42] The inverse of the effective Coulomb interaction is proportional to the modulus of the free particle Lindhard function and the Lindhard function exhibits a discontinuity at q=2kF
[43] A.W.Overhauser, Phy.Rev. 128, 1437 (1962)
[44] M.Zegrodnik, J.Spalek, Phy.Rev.B 98, 155144 (2018)
[45] J.Spalek, M.Zegrodnik, J.Kaczmarczyk, Phy.Rev.B 95, 024506 (2017)
[46] J.Spalek, Cond.Mat.Phys. 11, 455-462 (2008)
[47] V.Yu.Yushankhai, N.M.Plakida, P.Kalinay, Physica C 174, 401 (1991)
[48] Kazuhiko Sakakibara, Ikuo Ichinose, Tetsuo Matsui, Phys.Rev.B 46, 14779 (1992)
[49] N.M.Plakida, V.S. Oudovenko, P.Horsch, and A.I.Liechtenstein, Phy.Rev.B 55, R11997(R) (1997)