Search results for: apache benchmark andreverse proxy
129 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems
Authors: M. Fakharian, M. I. Khodakarami
Abstract:
In this paper, a new trend for improvement in semianalytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific subparametric elements. Mapping functions are uses as a class of higherorder Lagrange polynomials, special shape functions, Gauss-Lobatto- Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.
Keywords: 2D Elastodynamic Problems, Lagrange Polynomials, G-L-Lquadrature, Decoupled SBFEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985128 Dynamic Construction Site Layout Using Ant Colony Optimization
Authors: Y. Abdelrazig
Abstract:
Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.Keywords: Construction site layout, optimization, ant colony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3125127 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamics
Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao
Abstract:
This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, Saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effects of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.
Keywords: Asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 458126 Accounting Research from the Globalization Perspective
Authors: Paul Diaconu, Nicoleta Coman
Abstract:
This paper explores the idea of globalisation and considers accounting-s role in that process in order to develop new spaces for accounting research. That-s why in this paper we are looking for questions not necessary for answers. Adopting an 'alternative' view of accounting it-s related to the fact that we sees accounting as social and evolutionist process, that pays heed to those voices arguing for greater social and environmental justice, and that draws attention to the role of accounting researchers in the process of globalisation. The paper defines globalisation and expands the globalisation and accounting research agenda introducing in this context the harmonization process in accounting. There are the two main systems which are disputing the first stage of being the benchmark: GAAP and IFRS. Each of them has his pluses and minuses on being the selected one. Due to this fact a convergence of the two, joining the advantages and disadvantages of the two should be the solution for an unique international accounting solution. Is this idea realizable, what steps has been made until now, what should be done in the future. The paper is emphasising the role of the cultural differences in the process of imposing of an unique international accounting system by the global organizations..Keywords: Investors, capital markets, international accounting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739125 Integrated ACOR/IACOMV-R-SVM Algorithm
Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud
Abstract:
A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880124 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force
Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh
Abstract:
This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.Keywords: Frame, grey wolf optimization algorithm, modal residual force, structural damage detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495123 A Meta-Heuristic Algorithm for Vertex Covering Problem Based on Gravity
Authors: S. Raja Balachandar, K.Kannan
Abstract:
A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving vertex covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the vertex covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.
Keywords: Vertex covering Problem, Velocity, Gravitational Force, Newton's Law, Meta Heuristic, Combinatorial optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010122 Lattice Boltzmann Method for Turbulent Heat Transfer in Wavy Channel Flows
Authors: H.Y. Lai, S. C. Chang, W. L. Chen
Abstract:
The hydrodynamic and thermal lattice Boltzmann methods are applied to investigate the turbulent convective heat transfer in the wavy channel flows. In this study, the turbulent phenomena are modeling by large-eddy simulations with the Smagorinsky model. As a benchmark, the laminar and turbulent backward-facing step flows are simulated first. The results give good agreement with other numerical and experimental data. For wavy channel flows, the distribution of Nusselt number and the skin-friction coefficients are calculated to evaluate the heat transfer effect and the drag force. It indicates that the vortices at the trough would affect the magnitude of drag and weaken the heat convection effects on the wavy surface. In turbulent cases, if the amplitude of the wavy boundary is large enough, the secondary vortices would be generated at troughs and contribute to the heat convection. Finally, the effects of different Re on the turbulent transport phenomena are discussed.
Keywords: Heat transfer, lattice Boltzmann method, turbulence, wavy channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501121 RBF Modelling and Optimization Control for Semi-Batch Reactors
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.
Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496120 A Hybrid Overset Algorithm for Aerodynamic Problems with Moving Objects
Authors: S. M. H. Karimian, F. S. Salehi, H. Alisadeghi
Abstract:
A two-dimensional moving mesh algorithm is developed to simulate the general motion of two rotating bodies with relative translational motion. The grid includes a background grid and two sets of grids around the moving bodies. With this grid arrangement rotational and translational motions of two bodies are handled separately, with no complications. Inter-grid boundaries are determined based on their distances from two bodies. In this method, the overset concept is applied to hybrid grid, and flow variables are interpolated using a simple stencil. To evaluate this moving mesh algorithm unsteady Euler flow is solved for different cases using dual-time method of Jameson. Numerical results show excellent agreement with experimental data and other numerical results. To demonstrate the capability of present algorithm for accurate solution of flow fields around moving bodies, some benchmark problems have been defined in this paper.
Keywords: Moving mesh, Overset grid, Unsteady Euler, Relative motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694119 The Role of Business Survey Measures in Forecasting Croatian Industrial Production
Authors: M. Cizmesija, N. Erjavec, V. Bahovec
Abstract:
While the European Union (EU) harmonized methodology is a benchmark of worldwide used business survey (BS) methodology, the choice of variables that are components of the confidence indicators, as the leading indicators, is not strictly determined and unique. Therefore, the aim of this paper is to investigate and to quantify the relationship between all business survey variables in manufacturing industry and industrial production as a reference macroeconomic series in Croatia. The assumption is that there are variables in the business survey, that are not components of Industrial Confidence Indicator (ICI) and which can accurately (and sometimes better then ICI) predict changes in Croatian industrial production. Empirical analyses are conducted using quarterly data of BS variables in manufacturing industry and Croatian industrial production over the period from the first quarter 2005 to the first quarter 2013. Research results confirmed the assumption: three BS variables which is not components of ICI (competitive position, demand and liquidity) are the best leading indicator then ICI, in forecasting changes in Croatian industrial production instantaneously, with one, two or three quarter ahead.
Keywords: Balance, Business Survey, Confidence Indicators, Industrial Production, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921118 Great Powers’ Proxy Wars in Middle East and Difficulty in Transition from Cold War to Cold Peace
Authors: Arash Sharghi, Irina Dotu
Abstract:
The developments in the Middle East region have activated the involvement of a numerous diverse state and non-state actors in the regional affairs. The goals, positions, ideologies, different, and even contrast policy behaviors had procured the spreading and continuity of crisis. Non-state actors varying from Islamic organizations to takfiri-terrorist movements on one hand and regional and trans- regional actors, from another side, seek to reach their interests in the power struggle. Here, a research worthy question comes on the agenda: taking into consideration actors’ contradictory interests and constraints what are the regional peace and stability perspectives? Therein, different actors’ aims definition, their actions and behaviors, which affect instability, can be regarded as independent variables; whereas, on the contrary, Middle East peace and stability perspective analysis is a dependent variable. Though, this regional peace and war theory based research admits the significant influence of trans-regional actors, it asserts the roots of violence to derive from region itself. Consequently, hot war and conflict prevention and hot peace assurance in the Middle East region cannot be attained only by demands and approaches of trans-regional actors. Moreover, capacity of trans-regional actors is sufficient only for a cold war or cold peace to be reached in the region. Furthermore, within the framework of current conflict (struggle) between regional actors it seems to be difficult and even impossible to turn the cold war into a cold peace in the region.
Keywords: Cold peace, cold war, hot war, Middle East, non-state actors, regional and Great powers, war theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172117 Adaptive Digital Watermarking Integrating Fuzzy Inference HVS Perceptual Model
Authors: Sherin M. Youssef, Ahmed Abouelfarag, Noha M. Ghatwary
Abstract:
An adaptive Fuzzy Inference Perceptual model has been proposed for watermarking of digital images. The model depends on the human visual characteristics of image sub-regions in the frequency multi-resolution wavelet domain. In the proposed model, a multi-variable fuzzy based architecture has been designed to produce a perceptual membership degree for both candidate embedding sub-regions and strength watermark embedding factor. Different sizes of benchmark images with different sizes of watermarks have been applied on the model. Several experimental attacks have been applied such as JPEG compression, noises and rotation, to ensure the robustness of the scheme. In addition, the model has been compared with different watermarking schemes. The proposed model showed its robustness to attacks and at the same time achieved a high level of imperceptibility.Keywords: Watermarking, The human visual system (HVS), Fuzzy Inference System (FIS), Local Binary Pattern (LBP), Discrete Wavelet Transform (DWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818116 Estimating Shortest Circuit Path Length Complexity
Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake
Abstract:
When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378115 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning
Authors: K. Sivasubramanian, K. B. Jayanthi
Abstract:
Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.Keywords: Floor planning, harmony search, non-slicing floorplan, very large scale integrated circuits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956114 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs
Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh
Abstract:
The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.Keywords: Block layout problem, building-block layout design, CAD, optimization, search techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239113 Stock Portfolio Selection Using Chemical Reaction Optimization
Authors: Jin Xu, Albert Y.S. Lam, Victor O.K. Li
Abstract:
Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.Keywords: Stock portfolio selection, Markowitz model, Chemical Reaction Optimization, Sharpe ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075112 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases
Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha
Abstract:
Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.
Keywords: Feature fusion, image retrieval, membership function, normalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344111 Predictive Modelling Techniques in Sediment Yield and Hydrological Modelling
Authors: Adesoji T. Jaiyeola, Josiah Adeyemo
Abstract:
This paper presents an extensive review of literature relevant to the modelling techniques adopted in sediment yield and hydrological modelling. Several studies relating to sediment yield are discussed. Many research areas of sedimentation in rivers, runoff and reservoirs are presented. Different types of hydrological models, different methods employed in selecting appropriate models for different case studies are analysed. Applications of evolutionary algorithms and artificial intelligence techniques are discussed and compared especially in water resources management and modelling. This review concentrates on Genetic Programming (GP) and fully discusses its theories and applications. The successful applications of GP as a soft computing technique were reviewed in sediment modelling. Some fundamental issues such as benchmark, generalization ability, bloat, over-fitting and other open issues relating to the working principles of GP are highlighted. This paper concludes with the identification of some research gaps in hydrological modelling and sediment yield.Keywords: Artificial intelligence, evolutionary algorithm, genetic programming, sediment yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861110 Incorporation of SVS CBVLC Supplementary Controller for Damping SSR in Power System
Authors: Narendra Kumar, Sanjiv Kumar
Abstract:
Static VAR System (SVS) is a kind of FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper presents a systematic approach for designing SVS supplementary controller, which is used to improve the damping of power system oscillation. The combined bus voltage and line current (CBVLC) supplementary controller has been developed and incorporated in the SVS control system located at the middle of the series compensated long transmission line. Damping of torsional stresses due to subsynchronous resonance resulting from series capacitive compensation using CBVLC is investigated in this paper. Simulation results are carried out with MATLAB/Simulink on the IEEE first benchmark model (FBM). The simulation results show that the oscillations are satisfactorily damped out by the SVS supplementary controller. Time domain simulation is performed on power system and the results demonstrate the effectiveness of the proposed controller.
Keywords: Bus voltage and line current (BVLC), series compensation, sub synchronous resonance (SSR), supplementary controller, eigenvalue investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848109 Advanced Robust PDC Fuzzy Control of Nonlinear Systems
Authors: M. Polanský
Abstract:
This paper introduces a new method called ARPDC (Advanced Robust Parallel Distributed Compensation) for automatic control of nonlinear systems. This method improves a quality of robust control by interpolating of robust and optimal controller. The weight of each controller is determined by an original criteria function for model validity and disturbance appreciation. ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy systems and Parallel Distributed Compensation (PDC) control scheme. The relaxed stability conditions of ARPDC control of nominal system have been derived. The advantages of presented method are demonstrated on the inverse pendulum benchmark problem. From comparison between three different controllers (robust, optimal and ARPDC) follows, that ARPDC control is almost optimal with the robustness close to the robust controller. The results indicate that ARPDC algorithm can be a good alternative not only for a robust control, but in some cases also to an adaptive control of nonlinear systems.
Keywords: Robust control, optimal control, Takagi–Sugeno (TS) fuzzy models, linear matrix inequality (LMI), observer, Advanced Robust Parallel Distributed Compensation (ARPDC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575108 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist Competitive Algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population-based algorithm which has achieved a great performance in comparison to other metaheuristics. This study is about developing enhanced ICA approach to solve the Cell Formation Problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: Cell formation problem, Group technology, Imperialist competitive algorithm, Sequence data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588107 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator
Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam
Abstract:
This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975106 Detecting Remote Protein Evolutionary Relationships via String Scoring Method
Authors: Nazar Zaki, Safaai Deris
Abstract:
The amount of the information being churned out by the field of biology has jumped manifold and now requires the extensive use of computer techniques for the management of this information. The predominance of biological information such as protein sequence similarity in the biological information sea is key information for detecting protein evolutionary relationship. Protein sequence similarity typically implies homology, which in turn may imply structural and functional similarities. In this work, we propose, a learning method for detecting remote protein homology. The proposed method uses a transformation that converts protein sequence into fixed-dimensional representative feature vectors. Each feature vector records the sensitivity of a protein sequence to a set of amino acids substrings generated from the protein sequences of interest. These features are then used in conjunction with support vector machines for the detection of the protein remote homology. The proposed method is tested and evaluated on two different benchmark protein datasets and it-s able to deliver improvements over most of the existing homology detection methods.
Keywords: Protein homology detection; support vectormachine; string kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392105 Modeling and Analysis of a Cycling Prosthetic
Authors: John Tolentino, Yong Seok Park
Abstract:
There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.
Keywords: 3D printing, cycling, prosthetic design, synthetic design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624104 DQ Analysis of 3D Natural Convection in an Inclined Cavity Using an Velocity-Vorticity Formulation
Abstract:
In this paper, the differential quadrature method is applied to simulate natural convection in an inclined cubic cavity using velocity-vorticity formulation. The numerical capability of the present algorithm is demonstrated by application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for the seven field variables consisting of three velocities, three vorticities and temperature. The coupled equations are simultaneously solved by imposing the vorticity definition at boundary without requiring the explicit specification of the vorticity boundary conditions. Test results obtained for an inclined cubic cavity with different angle of inclinations for Rayleigh number equal to 103, 104, 105 and 106 indicate that the present coupled solution algorithm could predict the benchmark results for temperature and flow fields. Thus, it is convinced that the present formulation is capable of solving coupled Navier-Stokes equations effectively and accurately.
Keywords: Natural convection, velocity-vorticity formulation, differential quadrature (DQ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571103 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.
Keywords: Built-up area extraction, Google earth engine, adaptive thresholding method, rapid mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610102 Multi-Objective Optimization for Performance-based Seismic Retrofit using Connection Upgrade
Authors: Dong-Chul Lee, Byung-Kwan Oh, Se-Woon Choi, Hyo-Sun Park
Abstract:
The unanticipated brittle fracture of connection of the steel moment resisting frame (SMRF) occurred in 1994 the Northridge earthquake. Since then, the researches for the vulnerability of connection of the existing SMRF and for rehabilitation of those buildings were conducted. This paper suggests performance-based optimal seismic retrofit technique using connection upgrade. For optimal design, a multi-objective genetic algorithm(NSGA-II) is used. One of the two objective functions is to minimize initial cost and another objective function is to minimize lifetime seismic damages cost. The optimal algorithm proposed in this paper is performed satisfying specified performance objective based on FEMA 356. The nonlinear static analysis is performed for structural seismic performance evaluation. A numerical example of SAC benchmark SMRF is provided using the performance-based optimal seismic retrofit technique proposed in this paperKeywords: connection upgrade, performace-based seismicdesign, seismic retrofit, multi-objective optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036101 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm
Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab
Abstract:
The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.
Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338100 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification
Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman
Abstract:
In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698