Search results for: Circular Pipes
241 Experimental Investigation of Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Laminar Flow Regime inside a Circular Tube
Authors: H. Almohammadi, Sh. Nasiri Vatan, E. Esmaeilzadeh, A. Motezaker, A. Nokhosteen
Abstract:
In the present study, Convective heat transfer coefficient and pressure drop of Al2O3/water nanofluid in laminar flow regime under constant heat flux conditions inside a circular tube were experimentally investigated. Al2O3/water nanofluid with 0.5% and 1% volume concentrations with 15 nm diameter nanoparticles were used as working fluid. The effect of different volume concentrations on convective heat transfer coefficient and friction factor was studied. The results emphasize that increasing of particle volume concentration leads to enhance convective heat transfer coefficient. Measurements show the average heat transfer coefficient enhanced about 11-20% with 0.5% volume concentration and increased about 16-27% with 1% volume concentration compared to distilled water. In addition, the convective heat transfer coefficient of nanofluid enhances with increase in heat flux. From the results, the average ratio of (fnf/fbf) was about 1.10 for 0.5% volume concentration. Therefore, there is no significant increase in friction factor for nanofluids.Keywords: Convective heat transfer, Laminar flow regime, Nanofluids, Pressure drop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3767240 Weakened Vortex Shedding from a Rotating Cylinder
Authors: Sharul S. Dol
Abstract:
An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 2000 for velocity ratios, λ between 0 and 2.7. Particle image velocimetry data are analyzed to study the effects of rotation on the flow structures behind the cylinder. The results indicate that the rotation of the cylinder causes significant changes in the vortex formation. Kármán vortex shedding pattern of alternating vortices gives rise to strong periodic fluctuations of a vortex street for λ < 2.0. Alternate vortex shedding is weak and close to being suppressed at λ = 2.0 resulting a distorted street with vortices of alternating sense subsequently being found on opposite sides. Only part of the circulation is shed due to the interference in the separation point, mixing in the base region, re-attachment, and vortex cut-off phenomenon. Alternating vortex shedding pattern diminishes and completely disappears when the velocity ratio is 2.7. The shed vortices are insignificant in size and forming a single line of vortex street. It is clear that flow asymmetries will deteriorate vortex shedding, and when the asymmetries are large enough, total inhibition of a periodic street occurs.
Keywords: Circulation, particle image velocimetry, rotating circular cylinder, smoke-wire flow visualization, Strouhal number, vortex shedding, vortex street.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864239 Enhancement of Recycled Concrete Aggregate Properties by Mechanical Treatment and Verification in Concrete Mixes with Replacement up to 100%
Authors: Iveta Nováková, Martin-Andrè S. Husby, Boy-Arne Buyle
Abstract:
The building industry has one of the most significant contributions to global warming due to the production of building materials, transportation, building activities, and demolition of structures when they reach the end of their life. Implementation of circular material flow and circular economy can significantly reduce greenhouse gasses and simultaneously reduce the need for natural resources. The use of recycled concrete aggregates (RCA) is one of the possibilities for reducing the depletion of raw materials for concrete production. Concrete is the most used building material worldwide, and aggregates constitute large part of its volume. RCA can replace a certain amount of natural aggregates (NA), and concrete will still perform as required. The aim of this scientific paper is to evaluate RCA properties with and without mechanical treatment. Analysis of RCA itself will be followed by compressive strength of concrete containing various amounts of treated and non-treated RCA. Results showed improvement in compressive strength of the mix with mechanically treated RCA compared to standard RCA, and even the strength of concrete with mechanically treated RCA in dose 50% of coarse aggregates was higher than the reference mix by 4%. Based on obtained results, it can be concluded that integration of RCA in industrial concrete production is feasible, at a replacement ratio of 50% for mechanically treated RCA and 30% if untreated RCA is used, without affecting the compressive strength negatively.
Keywords: Recycled concrete aggregates, RCA, mechanical treatment, aggregate properties, compression strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472238 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608237 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor
Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli
Abstract:
Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.
Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029236 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars
Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic
Abstract:
Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.
Keywords: Circular economy, electric mobility, lithium ion batteries, remanufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5391235 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform
Authors: S. Chandrasekaran, P. A. Kiran
Abstract:
Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.Keywords: Offshore platforms, stability, postulated failure, dynamic tether tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901234 Fin Spacing Effect of the Tube Fin Heat Exchanger at the Floor Heating Convector
Authors: F. Lemfeld, K. Frana
Abstract:
This article deals with numerical simulation of the floor heating convector in 3D. Numerical simulation is focused on cooling mode of the floor heating convector. Geometrical model represents section of the heat exchanger – two fins with the gap between, pipes are not involved. Two types of fin are examined – sinusoidal and angular shape with different fin spacing. Results of fin spacing in case of constant Reynolds number are presented. For the numerical simulation was used commercial software Ansys Fluent.Keywords: fin spacing, cooling output, floor heating convector, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961233 Pressure Capacity Reduction of X52 Pipeline Steel Damaged by a Semi-Elliptical Pitting Corrosion
Authors: S. M. Kazerouni Sangi, Y. Gholipour
Abstract:
Steel made pipelines with different diameters are used for transmitting oil and gas which in many cases are buried in soil under the sea bed or immersed in sea water. External corrosion of pipes is an important form of deterioration due to the aggressive environment of sea water. Corrosion normally results in pits. Hence, using the finite element method, namely ABAQUS software, this paper estimates the amount of pressure capacity reduction of a pipecontaining a semi-elliptical pitting corrosion and the rate of corrosion during the pipeline life of 25 years.Keywords: Petroleum Transmission, Pipeline, PressureCapacity, Semi-Elliptical Pitting Corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537232 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.
Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640231 Application of a Fracture-Mechanics Approach to Gas Pipelines
Authors: Ľubomír Gajdoš, Martin Šperl
Abstract:
This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947230 Working Children and Adolescents and the Vicious Circle of Poverty from the Perspective of Gunnar Myrdal’s Theory of Circular Cumulative Causation: Analysis and Implementation of a Probit Model to Brazil
Authors: J. Leige Lopes, L. Aparecida Bastos, R. Monteiro da Silva
Abstract:
The objective of this paper is to study the work of children and adolescents and the vicious circle of poverty from the perspective of Guinar Myrdal’s Theory of Circular Cumulative Causation. The objective is to show that if a person starts working in the juvenile phase of life they will be classified as poor or extremely poor when they are adult, which can to be observed in the case of Brazil, more specifically in the north and northeast. To do this, the methodology used was statistical and econometric analysis by applying a probit model. The main results show that: if people reside in the northeastern region of Brazil, and if they have a low educational level and if they start their professional life before the age 18, they will increase the likelihood that they will be poor or extremely poor. There is a consensus in the literature that one of the causes of the intergenerational transmission of poverty is related to child labor, this because when one starts their professional life while still in the toddler or adolescence stages of life, they end up sacrificing their studies. Because of their low level of education, children or adolescents are forced to perform low-paid functions and abandon school, becoming in the future, people who will be classified as poor or extremely poor. As a result of poverty, parents may be forced to send their children out to work when they are young, so that in the future they will also become poor adults, a process that is characterized as the "vicious circle of poverty."Keywords: Children, adolescents, Gunnar Myrdal, poverty, vicious circle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689229 Industry Symbiosis and Waste Glass Upgrading: A Feasibility Study in Liverpool towards Circular Economy
Authors: Han-Mei Chen, Rongxin Zhou, Taige Wang
Abstract:
Glass is widely used in everyday life, from glass bottles for beverages, to architectural glass for various forms of glazing. Although the mainstream of used glass is recycled in the UK, the single-use and then recycling procedure results in a lot of waste as it incorporates intact glass with smashing, re-melting and remanufacturing. These processes bring massive energy consumption with a huge loss of high embodied energy and economic value, compared to re-use which’s towards a ‘zero carbon’ target. As a tourism city, Liverpool has more glass bottle consumption than most less leisure focused cities. It is therefore vital for Liverpool to find an upgrading approach for the single-use glass bottles with a low carbon output. This project aims to assess the feasibility of an industrial symbiosis and upgrading framework of glass and to investigate the ways of achieving them. It is significant to Liverpool’s future industry strategy since it provides an opportunity to target on economy recovery for post-COVID by industry symbiosis and an up-grading waste management in Liverpool to respond to the climate emergency. In addition, it will influence the local government policy for glass bottle reuse and recycling in North West England, and as a good practice to be further recommended to other areas of the UK. First, critical literature review of glass waste strategies has been conducted in the UK, and world-wide industrial symbiosis practices. Second, mapping, data collection and analysis have shown the current life cycle chain and the strong links of glass reuse and upgrading potentials via site visits to 16 local waste recycling centres. The results of this research have demonstrated the understanding the influence of key factors on the development of a circular industrial symbiosis business model for beverage glass bottles. The current waste management procedures of glass bottle industry, its business model, supply chain and the material flow have been reviewed. The various potential opportunities for glass bottle up-valuing have been investigated towards an industrial symbiosis in Liverpool. Finally, an up-valuing business model has been developed for an industrial symbiosis framework of glass in Liverpool. For glass bottles, there are two possibilities: 1) focus on upgrading processes towards re-use rather than single-use and recycling, 2) focus on ‘smart’ re-use and recycling leading to optimised values in other sectors to create a wider industry symbiosis for a multi-level and circular economy.
Keywords: Glass bottles, industry symbiosis, smart reuse, waste upgrading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241228 Influence of Artificial Roughness on Heat Transfer in the Rotating Flow
Authors: T. Magrakvelidze, N. Bantsadze, N. Lekveishvili, Kh. Lomidze
Abstract:
The results of an experimental study of the process of convective and boiling heat transfer in the vessel with stirrer for smooth and rough ring-shaped pipes are presented. It is established that creation of two-dimensional artificial roughness on the heated surface causes the essential (~100%) intensification of convective heat transfer. In case of boiling the influence of roughness appears on the initial stage of boiling and in case of fully developed nucleate boiling there was no intensification of heat transfer. The similitude equation for calculating convective heat transfer coefficient, which generalizes well experimental data both for the smooth and the rough surfaces is proposed.Keywords: boiling, heat transfer, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866227 A New Center of Motion in Cabling Robots
Authors: A. Abbasi Moshaii, F. Najafi
Abstract:
In this paper a new model for center of motion creating is proposed. This new method uses cables. So, it is very useful in robots because it is light and has easy assembling process. In the robots which need to be in touch with some things this method is so useful. It will be described in the following. The accuracy of the idea is proved by two experiments. This system could be used in the robots which need a fixed point in the contact with some things and make a circular motion.Keywords: Center of Motion, Robotic cables, permanent touching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668226 Electrical Energy Harvesting Using Thermo Electric Generator for Rural Communities in India
Authors: N. Nandan A. M. Nagaraj, L. Sanjeev Kumar
Abstract:
In the rapidly growing population, the requirement of electrical power is increasing day by day. In order to meet the needs, we need to generate the power using alternate method. In this paper, a presentable approach is developed by analysis and can be implemented by utilizing heat energy, which is generated in numerous ways in some of the rural areas in India. The thermoelectric generator unit will be developed by combing with control circuits and converts, which is used to light the LED lamps. The temperature difference which is available in the kitchens, especially the exhaust pipes/chimneys of wooden fire stoves, where more heat is dissipated into the atmosphere, can be utilized for electrical power generation. Hence, the temperature rise of surroundings atmosphere can be reduced.
Keywords: Thermoelectric generator, LED, converts, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815225 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space
Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi
Abstract:
This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.
Keywords: Transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675224 Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube
Authors: Abdulhassan Abd. K, Sattar Al-Jabair, Khalid Sultan
Abstract:
We have measured the pressure drop and convective heat transfer coefficient of water – based AL(25nm),AL2O3(30nm) and CuO(50nm) Nanofluids flowing through a uniform heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for Nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single-phase flow. After reducing the experimental results to the form of Reynolds, Rayleigh and Nusselt numbers. The results show the local Nusselt number and temperature have distribution with the non-dimensional axial distance from the tube entry. Study decided that thenNanofluid as Newtonian fluids through the design of the linear relationship between shear stress and the rate of stress has been the study of three chains of the Nanofluid with different concentrations and where the AL, AL2O3 and CuO – water ranging from (0.25 - 2.5 vol %). In addition to measuring the four properties of the Nanofluid in practice so as to ensure the validity of equations of properties developed by the researchers in this area and these properties is viscosity, specific heat, and density and found that the difference does not exceed 3.5% for the experimental equations between them and the practical. The study also demonstrated that the amount of the increase in heat transfer coefficient for three types of Nano fluid is AL, AL2O3, and CuO – Water and these ratios are respectively (45%, 32%, 25%) with insulation and without insulation (36%, 23%, 19%), and the statement of any of the cases the best increase in heat transfer has been proven that using insulation is better than not using it. I have been using three types of Nano particles and one metallic Nanoparticle and two oxide Nanoparticle and a statement, whichever gives the best increase in heat transfer.Keywords: Newtonian, NUR factor, Brownian motion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860223 Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3/Kerosene under Magnetic Field
Authors: H. R. Goshayeshi, M. Mansori, M. Ahmady, M. Khaloyi
Abstract:
This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°,45°, 60°,75° and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°.Keywords: Copper oscillating heat pipe, Fe2O3, magnetic field, inclination angles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171222 Efficient Real-time Remote Data Propagation Mechanism for a Component-Based Approach to Distributed Manufacturing
Authors: V. Barot, S. McLeod, R. Harrison, A. A. West
Abstract:
Manufacturing Industries face a crucial change as products and processes are required to, easily and efficiently, be reconfigurable and reusable. In order to stay competitive and flexible, situations also demand distribution of enterprises globally, which requires implementation of efficient communication strategies. A prototype system called the “Broadcaster" has been developed with an assumption that the control environment description has been engineered using the Component-based system paradigm. This prototype distributes information to a number of globally distributed partners via an adoption of the circular-based data processing mechanism. The work highlighted in this paper includes the implementation of this mechanism in the domain of the manufacturing industry. The proposed solution enables real-time remote propagation of machine information to a number of distributed supply chain client resources such as a HMI, VRML-based 3D views and remote client instances regardless of their distribution nature and/ or their mechanisms. This approach is presented together with a set of evaluation results. Authors- main concentration surrounds the reliability and the performance metric of the adopted approach. Performance evaluation is carried out in terms of the response times taken to process the data in this domain and compared with an alternative data processing implementation such as the linear queue mechanism. Based on the evaluation results obtained, authors justify the benefits achieved from this proposed implementation and highlight any further research work that is to be carried out.
Keywords: Broadcaster, circular buffer, Component-based, distributed manufacturing, remote data propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373221 Computational Fluid Dynamics Modeling of Downward Bubbly Flows
Authors: Mahmood Reza Rahimi, Hajir Karimi
Abstract:
Downward turbulent bubbly flows in pipes were modeled using computational fluid dynamics tools. The Hydrodynamics, phase distribution and turbulent structure of twophase air-water flow in a 57.15 mm diameter and 3.06 m length vertical pipe was modeled by using the 3-D Eulerian-Eulerian multiphase flow approach. Void fraction, liquid velocity and turbulent fluctuations profiles were calculated and compared against experimental data. CFD results are in good agreement with experimental data.Keywords: CFD, Bubbly flow, Vertical pipe, Population balance modeling, Gas void fraction, Liquid velocity, Normal turbulent stresses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485220 Sustainability Assessment of a Deconstructed Residential House
Authors: Atiq U. Zaman, Juliet Arnott
Abstract:
This paper analyses the various benefits and barriers of residential deconstruction in the context of environmental performance and circular economy based on a case study project in Christchurch, New Zealand. The case study project “Whole House Deconstruction” which aimed, firstly, to harvest materials from a residential house, secondly, to produce new products using the recovered materials, and thirdly, to organize an exhibition for the local public to promote awareness on resource conservation and sustainable deconstruction practices. Through a systematic deconstruction process, the project recovered around 12 tonnes of various construction materials, most of which would otherwise be disposed of to landfill in the traditional demolition approach. It is estimated that the deconstruction of a similar residential house could potentially prevent around 27,029 kg of carbon emission to the atmosphere by recovering and reusing the building materials. In addition, the project involved local designers to produce 400 artefacts using the recovered materials and to exhibit them to accelerate public awareness. The findings from this study suggest that the deconstruction project has significant environmental benefits, as well as social benefits by involving the local community and unemployed youth as a part of their professional skills development opportunities. However, the project faced a number of economic and institutional challenges. The study concludes that with proper economic models and appropriate institutional support a significant amount of construction and demolition waste can be reduced through a systematic deconstruction process. Traditionally, the greatest benefits from such projects are often ignored and remain unreported to wider audiences as most of the external and environmental costs have not been considered in the traditional linear economy.
Keywords: Circular economy, construction and demolition waste, resource recovery, systematic deconstruction, sustainable waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112219 Influence and Interaction of Temperature, H2S and pH on Concrete Sewer Pipe Corrosion
Authors: Anna Romanova, Mojtaba Mahmoodian, Morteza A. Alani
Abstract:
Concrete sewer pipes are known to suffer from a process of hydrogen sulfide gas induced sulfuric acid corrosion. This leads to premature pipe degradation, performance failure and collapses which in turn may lead to property and health damage. The above work reports on a field study undertaken in working sewer manholes where the parameters of effluent temperature and pH as well as ambient temperature and concentration of hydrogen sulfide were continuously measured over a period of two months. Early results suggest that effluent pH has no direct effect on hydrogen sulfide build up; on average the effluent temperature is 3.5°C greater than the ambient temperature inside the manhole and also it was observed that hydrogen sulfate concentration increases with increasing temperature.
Keywords: Concrete corrosion, hydrogen sulphide gas, temperature, sewer pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4945218 Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance
Authors: Barzin Gavtash, Khalid Hussain, Mohammad Layeghi, Saeed Sadeghi Lafmejani
Abstract:
This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.
Keywords: CFD, Heat Pipe, Nanofluid, Thermal resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44855217 Strain Based Evaluation of Dents in Pressurized Pipes
Authors: Maziar Ramezani, Thomas Neitzert
Abstract:
A dent is a gross distortion of the pipe cross-section. Dent depth is defined as the maximum reduction in the diameter of the pipe compared to the original diameter. Pipeline dent finite element (FE) simulation and theoretical analysis are conducted in this paper to develop an understanding of the geometric characteristics and strain distribution in the pressurized dented pipe. Based on the results, the magnitude of the denting force increases significantly with increasing the internal pressure, and the maximum circumferential and longitudinal strains increase by increasing the internal pressure and the dent depth. The results can be used for characterizing dents and ranking their risks to the integrity of a pipeline.Keywords: dented steel pipelines, Finite element model, Internal pressure, Strain distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5492216 A Condition Rating System for Wastewater Treatment Plants Infrastructures
Authors: Altayeb Qasem, Tarek Zayed, Zhi Chen
Abstract:
Statistics Canada stated that the wastewater treatment facilities in most provinces are aging and passes 63% of their useful life in 2007 the highest ratio among public infrastructure assets. Currently, there is no standard condition rating system for wastewater treatment plants that give a specific rating index that describe the physical integrity of different infrastructure elements in the treatment plant and its environmental performance. The main objective of this study is to develop a condition-rating index for wastewater treatment plants mainly activated sludge systems. The proposed WWTP CRI, is based on dividing the treatment plant into its three treatment phases; primary phase, secondary phase and the tertiary phase. The condition-rating index will reflect the infrastructures state for each phase, mainly tanks, pipes, blowers and pumps.Keywords: Condition rating index, Wastewater treatment plants, AHP- MUAT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791215 Solar Tracking System Using a Refrigerant as Working Medium for Solar Energy Conversion
Authors: S. Sendhil Kumar, S. N. Vijayan
Abstract:
Utilization of solar energy can be found in various domestic and industrial applications. The performance of any solar collector is largely affected by various parameters such as glazing, absorber plate, top covers, and heating pipes. Technology improvements have brought us another method for conversion of solar energy to direct electricity using solar photovoltaic system. Utilization and extraction of solar energy is the biggest problem in these conversion methods. This paper aims to overcome these problems and take the advantages of available energy from solar by maximizing the utilization through solar tracking system using a refrigerant as a working medium. The use of this tracking system can help increase the efficiency of conversion devices by maximum utilization of solar energy. The dual axis tracking system gives maximum energy output compared to single axis tracking system.Keywords: Refrigerant, solar collector, solar energy, solar panel, solar tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020214 Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die
Authors: Mehdi Modabberifar, Behrouz Raad, Bahman Mirzakhani
Abstract:
Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built.
Keywords: Die casting, finite element, flange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834213 Mathematical Modeling of Asphaltene Precipitation: A Review
Authors: Josefina Barnachea Janier, Radzuan B. Razali, Afza Shafie, Brahim Belhaouari Samir
Abstract:
In the Enhanced Oil Recovery (EOR) method, use of Carbon dioxide flooding whereby CO2 is injected into an oil reservoir to increase output when extracting oil resulted significant recovery worldwide. The carbon dioxide function as a pressurizing agent when mixed into the underground crude oil will reduce its viscosity and will enable a rapid oil flow. Despite the CO2’s advantage in the oil recovery, it may result to asphaltene precipitation a problem that will cause the reduction of oil produced from oil wells. In severe cases, asphaltene precipitation can cause costly blockages in oil pipes and machinery. This paper presents reviews of several studies done on mathematical modeling of asphaltene precipitation. The synthesized result from several researches done on this topic can be used as guide in order to better understand asphaltene precipitation. Likewise, this can be used as initial reference for students, and new researchers doing study on asphaltene precipitation.
Keywords: Asphaltene precipitation, crude oil, carbon dioxide flooding, enhanced oil recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3996212 Design and Fabrication of a Column-Climber Robot (Koala Robot)
Authors: Maziar Sadeghi, Amir Moradi
Abstract:
This paper proposes a robot able to climb Columns. This robot is not dependent on the diameter and material of the columns. Some climbing robots have been designed up to now but Koala robot was designed and fabricated for climbing columns exclusively. Simple kinematics of climbing in the nature inspired us to design this robot. We used two linear mechanisms to grip the column. The gripper consists of a DC motor and a power screw mechanism with a linear bushing as a guide. This mechanism provides enough force to grip the column. In addition we needed an actuator for climbing the column; hence, two pneumatic jacks were used. All the mechanical parts were designed according to the exerted forces and operational condition. The prototype can be simply installed and controlled on the column by an inexperienced operator. This robot is intended for inspection and surveillance of pipes in oil industries and power poles in electric industries.Keywords: Robot, Column-climber, Gripping mechanism, Koala.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175