Search results for: iterative learning control
4169 Dynamic Performance Evaluation of Distributed Generation Units in the Micro Grid
Authors: Abdolreza Roozbeh, Reza Sedaghati, Ali Asghar Baziar, Mohammad Reza Tabatabaei
Abstract:
This paper presents dynamic models of distributed generators (DG) and investigates dynamic behavior of the DG units in the micro grid system. The DG units include photovoltaic and fuel cell sources. The voltage source inverter is adopted since the electronic interface which can be equipped with its controller to keep stability of the micro grid during small signal dynamics. This paper also introduces power management strategies and implements the DG load sharing concept to keep the micro grid operation in gridconnected and islanding modes of operation. The results demonstrate the operation and performance of the photovoltaic and fuel cell as distributed generators in a micro grid. The entire control system in the micro grid is developed by combining the benefits of the power control and the voltage control strategies. Simulation results are all reported, confirming the validity of the proposed control technique.
Keywords: Stability, Distributed Generation, Dynamic, Micro Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20624168 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.
Keywords: Convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14194167 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania
Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga
Abstract:
Sub-Saharan Africa is described as the second fastest growing in mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying for various bills such as water, TV, and electricity. However, the potential of mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS based quiz questions used to assess mastery of subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of teachers in science and mathematics subjects in Tanzania. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. Results show that teachers who participated in chemistry and biology subjects have better performance compared to those who participated in mathematics and physics subjects. Teachers reported some challenges that led to poor performance, This research has several practical implications for those who are implementing or planning to use mobile phones in teaching and learning especially in rural secondary schools in sub-Saharan Africa.
Keywords: Mobile learning, e-learning, educational technologies, SMS, secondary education, assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20684166 Feedback-Controlled Server for Scheduling Aperiodic Tasks
Authors: Shinpei Kato, Nobuyuki Yamasaki
Abstract:
This paper proposes a scheduling scheme using feedback control to reduce the response time of aperiodic tasks with soft real-time constraints. We design an algorithm based on the proposed scheduling scheme and Total Bandwidth Server (TBS) that is a conventional server technique for scheduling aperiodic tasks. We then describe the feedback controller of the algorithm and give the control parameter tuning methods. The simulation study demonstrates that the algorithm can reduce the mean response time up to 26% compared to TBS in exchange for slight deadline misses.Keywords: Real-Time Systems, Aperiodic Task Scheduling, Feedback-Control Scheduling, Total Bandwidth Server.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17244165 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9484164 A Novel Reversible Watermarking Method based on Adaptive Thresholding and Companding Technique
Authors: Nisar Ahmed Memon
Abstract:
Embedding and extraction of a secret information as well as the restoration of the original un-watermarked image is highly desirable in sensitive applications like military, medical, and law enforcement imaging. This paper presents a novel reversible data-hiding method for digital images using integer to integer wavelet transform and companding technique which can embed and recover the secret information as well as can restore the image to its pristine state. The novel method takes advantage of block based watermarking and iterative optimization of threshold for companding which avoids histogram pre and post-processing. Consequently, it reduces the associated overhead usually required in most of the reversible watermarking techniques. As a result, it keeps the distortion small between the marked and the original images. Experimental results show that the proposed method outperforms the existing reversible data hiding schemes reported in the literature.Keywords: Adaptive Thresholding, Companding Technique, Integer Wavelet Transform, Reversible Watermarking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18694163 Control Improvement of a C Sugar Cane Crystallization Using an Auto-Tuning PID Controller Based on Linearization of a Neural Network
Authors: S. Beyou, B. Grondin-Perez, M. Benne, C. Damour, J.-P. Chabriat
Abstract:
The industrial process of the sugar cane crystallization produces a residual that still contains a lot of soluble sucrose and the objective of the factory is to improve its extraction. Therefore, there are substantial losses justifying the search for the optimization of the process. Crystallization process studied on the industrial site is based on the “three massecuites process". The third step of this process constitutes the final stage of exhaustion of the sucrose dissolved in the mother liquor. During the process of the third step of crystallization (Ccrystallization), the phase that is studied and whose control is to be improved, is the growing phase (crystal growth phase). The study of this process on the industrial site is a problem in its own. A control scheme is proposed to improve the standard PID control law used in the factory. An auto-tuning PID controller based on instantaneous linearization of a neural network is then proposed.
Keywords: Auto-tuning, PID, Instantaneous linearization, Neural network, Non linear process, C-crystallisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14684162 Manipulator Development for Telediagnostics
Authors: Adam Kurnicki, Bartłomiej Stanczyk, Bartosz Kania
Abstract:
This paper presents development of the light-weight manipulator with series elastic actuation for medical telediagnostics (USG examination). General structure of realized impedance control algorithm was shown. It was described how to perform force measurements based mainly on elasticity of manipulator links.
Keywords: Telediagnostics, elastic manipulator, impedance control, force measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20144161 Design of Air Conditioning Automation for Patisserie Shopwindow
Authors: Kemal Tutuncu, Recai Ozcan
Abstract:
Having done in this study, air-conditioning automation for patisserie shopwindow was designed. In the cooling sector it is quite important to cooling up the air temperature in the shopwindow within short time interval. Otherwise the patisseries inside of the shopwindow will be spoilt in a few days. Additionally the humidity is other important parameter for the patisseries kept in shopwindow. It must be raised up to desired level in a quite short time. Traditional patisserie shopwindows only allow controlling temperature manually. There is no humidity control and humidity is supplied by fans that are directed to the water at the bottom of the shopwindows. In this study, humidity and temperature sensors (SHT11), PIC, AC motor controller, DC motor controller, ultrasonic nebulizer and other electronic circuit members were used to simulate air conditioning automation for patisserie shopwindow in proteus software package. The simulation results showed that temperature and humidity values are adjusted in desired time duration by openloop control technique. Outer and inner temperature and humidity values were used for control mechanism.
Keywords: Air conditioning automation, temperature and humidity, SHT11, AC motor controller, open-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22054160 Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.
Keywords: Autonomous underwater vehicles, depth control, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18704159 Passenger Seat Vibration Comparison Using ANFIS Control in Active Quarter Car Model
Authors: Devdutt
Abstract:
In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.
Keywords: Active suspension system, ANFIS controller, passenger ride comfort, quarter car model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8374158 Effect of Acid Rain on Vigna radiata
Authors: Nilima Gajbhiye
Abstract:
The acid rain causes change in pH level of soil it is directly influence on root and leaf growth. Yield of the crop was reduced if acidity of soil is more. Acid rain seeps into the earth and poisons plants and trees by dissolving toxic substances in the soil, such as aluminum, which get absorbed by the roots. In present investigation, effect of acid rain on crop Vigna radiata was studied. The effect of acid rain on change in soil fertility was detected in which pH of control sample was 6.5 and pH of 1% H2SO4 and 1% HNO3 were 3.5. Nitrogen nitrate in soil was high in 1% HNO3 treated soil & Control sample. Ammonium nitrogen in soil was low in 1% HNO3 & H2SO4 treated soil. Ammonium nitrogen was medium in control and other samples. The effect of acid rain on seed germination on 3rd day of germination control sample growth was 6.1cm with plumule 0.001% HNO3 & 0.001% H2SO4 was 5.5cm with plumule and 8cm with plumule. On 10th day fungal growth was observed in 1% and 0.1% H2SO4 concentrations when all plants were dead. The effect of acid rain on crop productivity was investigated on 3rd day roots were developed in plants. On 12th day Vigna radiata showed more growth in 0.1% HNO3 and 0.1% H2SO4 treated plants as compare to control plants. On 20th day development of discoloration of plant pigments were observed on acid treated plants leaves. On 34th day Vigna radiata showed flower in 0.1% HNO3, 0.01% HNO3 and 0.01% H2SO4treated plants and no flowers were observed on control plants. On 42th day 0.1% HNO3, 0.01% HNO and 0.01% H2SO4 treated Vigna radiata variety and control plants were showed seeds on plants. In Vigna radiate variety 0.1%, 0.01% HNO3, 0.01% H2SO4treated plants were dead on 46th day and fungal growth was observed. The toxicological study was carried out on Vigna radiata plants exposed to 1% HNO3 cells were damaged more than 1% H2SO4. Leaf sections exposed to 0.001% HNO3 & H2SO4 showed less damaged of cells and pigmentation observed in entire slide when compare with control plant.
Keywords: Acid rain, pH, Vigna radiate, HNO3 & H2SO4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32634157 A Model for Collaborative COTS Software Acquisition (COSA)
Authors: Torsti Rantapuska, Sariseelia Sore
Abstract:
Acquiring commercial off-the-shelf (COTS) software applications is becoming routine in organizations. However, eliciting user requirements, finding the candidate COTS products and making the decision is a complex task, especially for SMEs who do not have the time and knowledge needed to do the task properly. The existing models intended to help the decision makers are originally designed for professional use. SMEs are obligated to rely on the software vendor’s ability to solve the problem with the systems provided. In this paper, we develop a model for SMEs for the acquisition of Commercial Off-The-Shelf (COTS) software products. A leading idea of the model is that the ICT investment is basically a change initiative and therefore it should also be taken as a process of organizational learning. The model is designed bearing three objectives in mind: 1) business orientation, 2) agility, and 3) Learning and knowledge management orientation. The model can be applied to ICT investments in SMEs which have a professional team leader with basic business and IT knowledge.
Keywords: COTS acquisition, ICT investment, organizational learning, ICT adoption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17704156 Visual Analytics in K 12 Education - Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors within Actor-network theory (ANT). The learning conditions are found to be distinguished by broad complexity, characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.
Keywords: Analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16974155 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform
Authors: Yingqi Cui, Changran Huang, Raymond Lee
Abstract:
In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.
Keywords: Artificial intelligence, natural language process, knowledge graph, agent, QA system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8944154 Control of Pendulum on a Cart with State Dependent Riccati Equations
Authors: N. M. Singh, Jayant Dubey, Ghanshyam Laddha
Abstract:
State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR method. It has the capability of being applied to control nonlinear systems. In this paper the technique has been applied to control the single inverted pendulum (SIP) which represents a rich class of nonlinear underactuated systems. SIP modeling is based on Euler-Lagrange equations. A procedure is developed for judicious selection of weighting parameters and constraint handling. The controller designed by SDRE technique here gives better results than existing controllers designed by energy based techniques.Keywords: State Dependent Riccati Equation (SDRE), Single Inverted Pendulum (SIP), Linear Quadratic Regulator (LQR)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30864153 Automatic Generation Control of an Interconnected Power System with Capacitive Energy Storage
Authors: Rajesh Joseph Abraham, D. Das, Amit Patra
Abstract:
This paper is concerned with the application of small rating Capacitive Energy Storage units for the improvement of Automatic Generation Control of a multiunit multiarea power system. Generation Rate Constraints are also considered in the investigations. Integral Squared Error technique is used to obtain the optimal integral gain settings by minimizing a quadratic performance index. Simulation studies reveal that with CES units, the deviations in area frequencies and inter-area tie-power are considerably improved in terms of peak deviations and settling time as compared to that obtained without CES units.Keywords: Automatic Generation Control, Capacitive EnergyStorage, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27984152 Websites for Hypothesis Testing
Authors: František Mošna
Abstract:
E-learning has become an efficient and widespread means of education at all levels of human activities. Statistics is no exception. Unfortunately the main focus in statistics teaching is usually paid to the substitution in formulas. Suitable websites can simplify and automate calculations and provide more attention and time to the basic principles of statistics, mathematization of real-life situations and following interpretation of results. We now introduce our own web-site for hypothesis testing. Its didactic aspects, the technical possibilities of the individual tools, the experience of use and the advantages or disadvantages are discussed in this paper. This web-site is not a substitute for common statistical software but should significantly improve the teaching of statistics at universities.
Keywords: E-learning, hypothesis testing, PHP, websites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23504151 Composite Relevance Feedback for Image Retrieval
Authors: Pushpa B. Patil, Manesh B. Kokare
Abstract:
This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.
Keywords: Image retrieval, relevance feedback, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19934150 Design of Direct Power Controller for a High Power Neutral Point Clamped Converter Using Real Time Simulator
Authors: Amin Zabihinejad, Philippe Viarouge
Abstract:
In this paper, a direct power control (DPC) strategies have been investigated in order to control a high power AC/DC converter with time variable load. This converter is composed of a three level three phase neutral point clamped (NPC) converter as rectifier and an H-bridge four quadrant current control converter. In the high power application, controller not only must adjust the desire outputs but also decrease the level of distortions which are injected to the network from the converter. Regarding to this reason and nonlinearity of the power electronic converter, the conventional controllers cannot achieve appropriate responses. In this research, the precise mathematical analysis has been employed to design the appropriate controller in order to control the time variable load. A DPC controller has been proposed and simulated using Matlab/ Simulink. In order to verify the simulation result, a real time simulator- OPAL-RT- has been employed. In this paper, the dynamic response and stability of the high power NPC with variable load has been investigated and compared with conventional types using a real time simulator. The results proved that the DPC controller is more stable and has more precise outputs in comparison with conventional controller.
Keywords: Direct Power Control, Three Level Rectifier, Real Time Simulator, High Power Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19704149 Concept Indexing using Ontology and Supervised Machine Learning
Authors: Rossitza M. Setchi, Qiao Tang
Abstract:
Nowadays, ontologies are the only widely accepted paradigm for the management of sharable and reusable knowledge in a way that allows its automatic interpretation. They are collaboratively created across the Web and used to index, search and annotate documents. The vast majority of the ontology based approaches, however, focus on indexing texts at document level. Recently, with the advances in ontological engineering, it became clear that information indexing can largely benefit from the use of general purpose ontologies which aid the indexing of documents at word level. This paper presents a concept indexing algorithm, which adds ontology information to words and phrases and allows full text to be searched, browsed and analyzed at different levels of abstraction. This algorithm uses a general purpose ontology, OntoRo, and an ontologically tagged corpus, OntoCorp, both developed for the purpose of this research. OntoRo and OntoCorp are used in a two-stage supervised machine learning process aimed at generating ontology tagging rules. The first experimental tests show a tagging accuracy of 78.91% which is encouraging in terms of the further improvement of the algorithm.Keywords: Concepts, indexing, machine learning, ontology, tagging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16784148 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller
Authors: Jia-Shiun Chen, Hsiu-Ying Hwang
Abstract:
Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.
Keywords: Hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26084147 Improved Torque Control of Electrical Load Simulator with Parameters and State Estimation
Authors: Nasim Ullah, Shaoping Wang
Abstract:
ELS is an important ground based hardware in the loop simulator used for aerodynamics torque loading experiments of the actuators under test. This work focuses on improvement of the transient response of torque controller with parameters uncertainty of Electrical Load Simulator (ELS).The parameters of load simulator are estimated online and the model is updated, eliminating the model error and improving the steady state torque tracking response of torque controller. To improve the Transient control performance the gain of robust term of SMC is updated online using fuzzy logic system based on the amount of uncertainty in parameters of load simulator. The states of load simulator which cannot be measured directly are estimated using luenberger observer with update of new estimated parameters. The stability of the control scheme is verified using Lyapunov theorem. The validity of proposed control scheme is verified using simulations.Keywords: ELS, Observer, Transient Performance, SMC, Extra Torque, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20364146 A Cognitive Model of Character Recognition Using Support Vector Machines
Authors: K. Freedman
Abstract:
In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition.Keywords: Character recognition, cognitive model, support vector machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18784145 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14654144 Self-efficacy, Self-reliance, and Motivation inan Asynchronous Learning Environment
Authors: Linda H. Meyer, Carol S. Sternberger
Abstract:
Self-efficacy, self-reliance, and motivation were examined in a quasi-experimental study with 178 sophomore university students. Participants used an interactive cardiovascular anatomy and physiology CD-ROM, and completed a 15-item questionnaire. Reliability of the questionnaire was established using Cronbach-s alpha. Post-tests and course grades were examined using a t-test, demonstrating no significance. Results of an item-to-item analysis of the questionnaire showed overall satisfaction with the teaching methodology and varied results for self-efficacy, selfreliance, and motivation. Kendall-s Tau was calculated for all items in the questionnaire.Keywords: Asynchronous learning environments, motivation, self-efficacy, self-reliance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36584143 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models
Authors: P. Srinivas, P. V. N. Prasad
Abstract:
Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands.
The DTC of SRM is analyzed by two methods. In one method, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.
Keywords: Direct Toque Control, Simplified Torque Equation, Finite Element Analysis, Torque Ripple.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35034142 Lagrange-s Inversion Theorem and Infiltration
Authors: Pushpa N. Rathie, Prabhata K. Swamee, André L. B. Cavalcante, Luan Carlos de S. M. Ozelim
Abstract:
Implicit equations play a crucial role in Engineering. Based on this importance, several techniques have been applied to solve this particular class of equations. When it comes to practical applications, in general, iterative procedures are taken into account. On the other hand, with the improvement of computers, other numerical methods have been developed to provide a more straightforward methodology of solution. Analytical exact approaches seem to have been continuously neglected due to the difficulty inherent in their application; notwithstanding, they are indispensable to validate numerical routines. Lagrange-s Inversion Theorem is a simple mathematical tool which has proved to be widely applicable to engineering problems. In short, it provides the solution to implicit equations by means of an infinite series. To show the validity of this method, the tree-parameter infiltration equation is, for the first time, analytically and exactly solved. After manipulating these series, closed-form solutions are presented as H-functions.Keywords: Green-Ampt Equation, Lagrange's Inversion Theorem, Talsma-Parlange Equation, Three-Parameter Infiltration Equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18884141 Chase Trainer Exercise Program in Athlete with Unilateral Patellofemoral Pain Syndrome (PFPS)
Authors: Asha Hasnimy Mohd Hashim, Lee Ai Choo
Abstract:
We investigated the effects of modified preprogrammed training mode Chase Trainer from Balance Trainer (BT3, HurLab, Tampere, Finland) on athlete who experienced unilateral Patellofemoral Pain Syndrome (PFPS). Twenty-seven athletes with mean age= 14.23 ±1.31 years, height = 164.89 ± 7.85 cm, weight = 56.94 ± 9.28 kg were randomly assigned to two groups: experiment (EG; n = 14) and injured (IG; n = 13). EG performed a series of Chase Trainer program which required them to shift their body weight at different directions, speeds and angle of leaning twice a week for duration of 8 weeks. The static postural control and perceived pain level measures were taken at baseline, after 6 weeks and 8 weeks of training. There was no significant difference in any of tested variables between EG and IG before and after 6-week the intervention period. However, after 8-week of training, the postural control (eyes open) and perceived pain level of EG improved compared to IG (p<0.05). The postural control with eyes closed of EG improved (p<0.05) but the values were not significantly different compared to IG after training. The results suggest that using Chase Trainer exercise program it is possible to improve individual postural control and decreased perceived pain level in athlete with unilateral Patellofemoral Pain Syndrome (PFPS).
Keywords: Patellofemoral Pain Syndrome, perceived pain level, postural control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14704140 Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator
Authors: A. Omran, G. El-Bayiumi, M. Bayoumi, A. Kassem
Abstract:
Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.
Keywords: Stewart kinematics, Stewart dynamics, task space control, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894