Search results for: Mixing ratio
448 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties
Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach
Abstract:
The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO2 nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO2 nanoparticles was characterized from 30 nm to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.
Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553447 Wave-Structure Interaction for Submerged Quarter-Circle Breakwaters of Different Radii - Reflection Characteristics
Authors: Arkal Vittal Hegde, L. Ravikiran
Abstract:
The paper presents the results of a series of experiments conducted on physical models of Quarter-circle breakwater (QBW) in a two dimensional monochromatic wave flume. The purpose of the experiments was to evaluate the reflection coefficient Kr of QBW models of different radii (R) for different submergence ratios (d/hc), where d is the depth of water and hc is the height of the breakwater crest from the sea bed. The radii of the breakwater models studied were 20cm, 22.5cm, 25cm, 27.5cm and submergence ratios used varied from 1.067 to 1.667. The wave climate off the Mangalore coast was used for arriving at the various model wave parameters. The incident wave heights (Hi) used in the flume varied from 3 to 18cm, and wave periods (T) ranged from 1.2 s to 2.2 s. The water depths (d) of 40cm, 45cm and 50cm were used in the experiments. The data collected was analyzed to compute variation of reflection coefficient Kr=Hr/Hi (where Hr=reflected wave height) with the wave steepness Hi/gT2 for various R/Hi (R=breakwater radius) values. It was found that the reflection coefficient increased as incident wave steepness increased. Also as wave height decreases reflection coefficient decreases and as structure radius R increased Kr decreased slightly.
Keywords: Incident wave steepness, Quarter-circle breakwater, Reflection coefficient, Submergence ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795446 Influence of Infrared Radiation on the Growth Rate of Microalgae Chlorella sorokiniana
Authors: Natalia Politaeva, Iuliia Smiatskaia, Iuliia Bazarnova, Iryna Atamaniuk, Kerstin Kuchta
Abstract:
Nowadays, the progressive decrease of primary natural resources and ongoing upward trend in terms of energy demand, have resulted in development of new generation technological processes which are focused on step-wise production and residues utilization. Thus, microalgae-based 3rd generation bioeconomy is considered one of the most promising approaches that allow production of value-added products and sophisticated utilization of residues biomass. In comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, and thus, addressing issues associated with negative social and environmental impacts. However, one of the most challenging tasks is to undergo seasonal variations and to achieve optimal growing conditions for indoor closed systems that can cover further demand for material and energetic utilization of microalgae. For instance, outdoor cultivation in St. Petersburg (Russia) is only suitable within rather narrow time frame (from mid-May to mid-September). At earlier and later periods, insufficient sunlight and heat for the growth of microalgae were detected. On the other hand, without additional physical effects, the biomass increment in summer is 3-5 times per week, depending on the solar radiation and the ambient temperature. In order to increase biomass production, scientists from all over the world have proposed various technical solutions for cultivators and have been studying the influence of various physical factors affecting biomass growth namely: magnetic field, radiation impact, and electric field, etc. In this paper, the influence of infrared radiation (IR) and fluorescent light on the growth rate of microalgae Chlorella sorokiniana has been studied. The cultivation of Chlorella sorokiniana was carried out in 500 ml cylindrical glass vessels, which were constantly aerated. To accelerate the cultivation process, the mixture was stirred for 15 minutes at 500 rpm following 120 minutes of rest time. At the same time, the metabolic needs in nutrients were provided by the addition of micro- and macro-nutrients in the microalgae growing medium. Lighting was provided by fluorescent lamps with the intensity of 2500 ± 300 lx. The influence of IR was determined using IR lamps with a voltage of 220 V, power of 250 W, in order to achieve the intensity of 13 600 ± 500 lx. The obtained results show that under the influence of fluorescent lamps along with the combined effect of active aeration and variable mixing, the biomass increment on the 2nd day was three times, and on the 7th day, it was eight-fold. The growth rate of microalgae under the influence of IR radiation was lower and has reached 22.6·106 cells·mL-1. However, application of IR lamps for the biomass growth allows maintaining the optimal temperature of microalgae suspension at approximately 25-28°C, which might especially be beneficial during the cold season in extreme climate zones.
Keywords: Biomass, fluorescent lamp, infrared radiation, microalgae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025445 Simulation of the Effect of Sea Water Using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams
Authors: Rudy Djamaluddin, Arbain Tata, Rita Irmawaty
Abstract:
The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. Fiber reinforced polymer (FRP) has been developed and applied in many fields civil engineering structures on the new structures and also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance as well as high tensile strength to weight ratio. Compared to the other FRP materials, Glass composed FRP (GFRP) is relatively cheaper. GFRP sheet is applied externally by bonding it on the concrete surface. The studies regarding the application of GFRP sheet have been conducted such as strengthening system, bonding behavior of GFRP sheet including the application as reinforcement in new structures. For application to the structures with direct contact to sea environment, a study regarding the effect of sea water to the bonding capacity of GFRP sheet is important to be clarified. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six month exposed to the sea water.Keywords: GFRP sheet, sea water, concrete beams, bonding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868444 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics
Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis
Abstract:
We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Nondestructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscalespecific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.
Keywords: Carbon nanotubes, ceramic matrix composites, toughening, ultrasonics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740443 Performance Verification of Seismic Design Codes for RC Frames
Authors: Payam Asadi, Ali Bakhshi
Abstract:
In this study, a frame work for verification of famous seismic codes is utilized. To verify the seismic codes performance, damage quantity of RC frames is compared with the target performance. Due to the randomness property of seismic design and earthquake loads excitation, in this paper, fragility curves are developed. These diagrams are utilized to evaluate performance level of structures which are designed by the seismic codes. These diagrams further illustrate the effect of load combination and reduction factors of codes on probability of damage exceedance. Two types of structures; very high important structures with high ductility and medium important structures with intermediate ductility are designed by different seismic codes. The Results reveal that usually lower damage ratio generate lower probability of exceedance. In addition, the findings indicate that there are buildings with higher quantity of bars which they have higher probability of damage exceedance. Life-cycle cost analysis utilized for comparison and final decision making process.
Keywords: RC frame, fragility curve, performance-base design, life-cycle cost analyses, seismic design codes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939442 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling
Authors: K. Soldatova, Y. Galerkin
Abstract:
A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.
Keywords: Centrifugal compressor stage, centrifugal compressor, loading factor, gas dynamic performance curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105441 Waste Burial to the Pressure Deficit Areas in the Eastern Siberia
Authors: L. Abukova, O. Abramova, A. Goreva, Y. Yakovlev
Abstract:
Important executive decisions on oil and gas production stimulation in Eastern Siberia have been recently taken. There are unique and large fields of oil, gas, and gas-condensate in Eastern Siberia. The Talakan, Koyumbinskoye, Yurubcheno-Tahomskoye, Kovykta, Chayadinskoye fields are supposed to be developed first. It will result in an abrupt increase in environmental load on the nature of Eastern Siberia. In Eastern Siberia, the introduction of ecological imperatives in hydrocarbon production is still realistic. Underground water movement is the one of the most important factors of the ecosystems condition management. Oil and gas production is associated with the forced displacement of huge water masses, mixing waters of different composition, and origin that determines the extent of anthropogenic impact on water drive systems and their protective reaction. An extensive hydrogeological system of the depression type is identified in the pre-salt deposits here. Pressure relieve here is steady up to the basement. The decrease of the hydrodynamic potential towards the basement with such a gradient resulted in reformation of the fields in process of historical (geological) development of the Nepsko-Botuobinskaya anteclise. The depression hydrodynamic systems are characterized by extremely high isolation and can only exist under such closed conditions. A steady nature of water movement due to a strictly negative gradient of reservoir pressure makes it quite possible to use environmentally-harmful liquid substances instead of water. Disposal of the most hazardous wastes is the most expedient in the deposits of the crystalline basement in certain structures distant from oil and gas fields. The time period for storage of environmentally-harmful liquid substances may be calculated by means of the geological time scales ensuring their complete prevention from releasing into environment or air even during strong earthquakes. Disposal of wastes of chemical and nuclear industries is a matter of special consideration. The existing methods of storage and disposal of wastes are very expensive. The methods applied at the moment for storage of nuclear wastes at the depth of several meters, even in the most durable containers, constitute a potential danger. The enormous size of the depression system of the Nepsko-Botuobinskaya anteclise makes it possible to easily identify such objects at the depth below 1500 m where nuclear wastes will be stored indefinitely without any environmental impact. Thus, the water drive system of the Nepsko-Botuobinskaya anteclise is the ideal object for large-volume injection of environmentally harmful liquid substances even if there are large oil and gas accumulations in the subsurface. Specific geological and hydrodynamic conditions of the system allow the production of hydrocarbons from the subsurface simultaneously with the disposal of industrial wastes of oil and gas, mining, chemical, and nuclear industries without any environmental impact.Keywords: Eastern Siberia, formation pressure, underground water, waste burial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004440 Influence of Silica Fume on the Properties of Self Compacting Concrete
Authors: Salem Alsanusi
Abstract:
A self-compacting concrete (SCC) is the one that can be placed in the form and can go through obstructions by its own weight and without the need of vibration. Since its first development in Japan in 1988, SCC has gained wider acceptance in Japan, Europe and USA due to its inherent distinct advantages. Although there are visible signs of its gradual acceptance in the North Africa through its limited use in construction, Libya has yet to explore the feasibility and applicability of SCC in new construction. The contributing factors to this reluctance appear to be lack of any supportive evidence of its suitability with local aggregates and the harsh environmental conditions. The primary aim of this study is to explore the feasibility of using SCC made with local aggregates of Eastern Province of Libya by examining its basic properties characteristics. This research consists of: (i) Development of a suitable mix for SCC such as the effect of water to cement ratio, limestone and silica fume that would satisfy the requirements of the plastic state; (ii) Casting of concrete samples and testing them for compressive strength and unit weight. Local aggregates, cement, admixtures and industrial waste materials were used in this research. The significance of this research lies in its attempt to provide some performance data of SCC made in the Eastern Province of Libya so as to draw attention to the possible use of SCC.Keywords: Silica fume, self compacting concrete, workability, coarse and fine aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115439 Single Zone Model for HCCI Engine Fueled with n-Heptane
Authors: Thanapiyawanit Bancha, Lu Jau-Huai
Abstract:
In this study, we developed a model to predict the temperature and the pressure variation in an internal combustion engine operated in HCCI (Homogeneous charge compression ignition) mode. HCCI operation begins from aspirating of homogeneous charge mixture through intake valve like SI (Spark ignition) engine and the premixed charge is compressed until temperature and pressure of mixture reach autoignition point like diesel engine. Combustion phase was described by double-Wiebe function. The single zone model coupled with an double-Wiebe function were performed to simulated pressure and temperature between the period of IVC (Inlet valve close) and EVO (Exhaust valve open). Mixture gas properties were implemented using STANJAN and transfer the results to main model. The model has considered the engine geometry and enables varying in fuelling, equivalence ratio, manifold temperature and pressure. The results were compared with the experiment and showed good correlation with respect to combustion phasing, pressure rise, peak pressure and temperature. This model could be adapted and use to control start of combustion for HCCI engine.Keywords: Double-Wiebe function, HCCI, Ignition enhancer, Single zone model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803438 Simulating the Dynamics of Distribution of Hazardous Substances Emitted by Motor Engines in a Residential Quarter
Authors: S. Grishin
Abstract:
This article is dedicated to development of mathematical models for determining the dynamics of concentration of hazardous substances in urban turbulent atmosphere. Development of the mathematical models implied taking into account the time-space variability of the fields of meteorological items and such turbulent atmosphere data as vortex nature, nonlinear nature, dissipativity and diffusivity. Knowing the turbulent airflow velocity is not assumed when developing the model. However, a simplified model implies that the turbulent and molecular diffusion ratio is a piecewise constant function that changes depending on vertical distance from the earth surface. Thereby an important assumption of vertical stratification of urban air due to atmospheric accumulation of hazardous substances emitted by motor vehicles is introduced into the mathematical model. The suggested simplified non-linear mathematical model of determining the sought exhaust concentration at a priori unknown turbulent flow velocity through non-degenerate transformation is reduced to the model which is subsequently solved analytically.Keywords: Urban ecology, time-dependent mathematical model, exhaust concentration, turbulent and molecular diffusion, airflow velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411437 Aerodynamic Analysis of Dimple Effect on Aircraft Wing
Authors: E. Livya, G. Anitha, P. Valli
Abstract:
The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s and 60m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favors the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft.
Keywords: Airfoil, Boundary layer, Dimple effect, Flow separation, Stall reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6148436 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair
Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira
Abstract:
A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.
Keywords: Bottleneck, Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956435 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids
Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim
Abstract:
In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.Keywords: Magnetic nanofluids, thermal conductivity, Viscosity, NiFe2O4-water, CoFe2O4-water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842434 A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix
Authors: K. Krishna Veni, S. Raja Balachandar
Abstract:
This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems.
Keywords: 0-1 Multi constrained Knapsack problem, heuristic, computational complexity, NP-Hard problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858433 A New Strategy for Minimizing Precipitations during ASP Flooding in Carbonate Reservoirs
Authors: Khaled Abdalla Elraies, Shuaib Ahmed
Abstract:
A large quantity of world-s oil reserves exists in carbonate reservoirs. Carbonate reservoirs are very sensitive to chemical enhanced oil recovery process because of containing large amount of calcite, dolomite and calcium sulfate minerals. These minerals cause major obstacles during alkali-surfactant-polymer (ASP) flooding. Alkali reacts with these minerals and form undesired precipitations which plug effective porous openings, reduce permeability and cause scale occurrence at the wellbore. In this paper, a new chemical combination consists of acrylic acid and alkali was used to minimize precipitation problem during ASP flooding. A series of fluid-fluid compatibility tests were performed using acrylic acid and different concentrations of alkaline. Two types of alkalis namely; sodium carbonate and sodium metaborate were screened. As a result, the combination of acrylic acid and sodium carbonate was not effective in preventing calcium and magnesium precipitations. However, acrylic acid and sodium metaborate showed promising results for keeping all solutions without any precipitations. The ratio of acrylic acid to sodium metaborate of 0.7:1.0 was found to be optimum for achieving a compatible solution for 30 days at 80oC.Keywords: Fluid-fluid compatibility test, Carbonate reservoirs, Precipitations and ASP flooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752432 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation
Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina
Abstract:
An unconventional composite inorganic ceramic membrane capable of enhancing carbon dioxide emission decline was fabricated and tested at laboratory scale in conformism to various environmental guidelines and also to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms is presented. Single gas permeation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous support was carried out to investigate individual gas permeation behaviours at different pressures at room temperature. Membrane fabrication was achieved using after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However above a pressure of 3bar, CO2 permeability ratio to that of the other gases indicated control of a more selective surface adsorptive transport mechanism.Keywords: Carbon dioxide composite inorganic membranes, permeability, transport mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093431 Cost-Effective Design of Space Structures Joints: A Review
Authors: Mohammed I. Ali, Feng Fan, Peter N. Khakina, Ma H.H
Abstract:
In construction of any structure, the aesthetic and utility values should be considered in such a way as to make the structure cost-effective. Most structures are composed of elements and joints which are very critical in any skeletal space structure because they majorly determine the performance of the structure. In early times, most space structures were constructed using rigid joints which had the advantage of better performing structures as compared to pin-jointed structures but with the disadvantage of requiring all the construction work to be done on site. The discovery of semi-rigid joints now enables connections to be prefabricated and quickly assembled on site while maintaining good performance. In this paper, cost-effective is discussed basing on strength of connectors at the joints, buckling of joints and overall structure, and the effect of initial geometrical imperfections. Several existing joints are reviewed by classifying them into categories and discussing where they are most suited and how they perform structurally. Also, finite element modeling using ABAQUS is done to determine the buckling behavior. It is observed that some joints are more economical than others. The rise to span ratio and imperfections are also found to affect the buckling of the structures. Based on these, general principles that guide the design of cost-effective joints and structures are discussed.
Keywords: Buckling, Connectors, Joint stiffness, Eccentricity, Second moment of area, Semi-rigid joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4777430 Production of Carbon Nanotubes by Iron Catalyst
Authors: Ezgi Dündar-Tekkaya, Nilgün Karatepe
Abstract:
Carbon nanotubes (CNTs) with their high mechanical, electrical, thermal and chemical properties are regarded as promising materials for many different potential applications. Having unique properties they can be used in a wide range of fields such as electronic devices, electrodes, drug delivery systems, hydrogen storage, textile etc. Catalytic chemical vapor deposition (CCVD) is a common method for CNT production especially for mass production. Catalysts impregnated on a suitable substrate are important for production with chemical vapor deposition (CVD) method. Iron catalyst and MgO substrate is one of most common catalyst-substrate combination used for CNT. In this study, CNTs were produced by CCVD of acetylene (C2H2) on magnesium oxide (MgO) powder substrate impregnated by iron nitrate (Fe(NO3)3•9H2O) solution. The CNT synthesis conditions were as follows: at synthesis temperatures of 500 and 800°C multiwall and single wall CNTs were produced respectively. Iron (Fe) catalysts were prepared by with Fe:MgO ratio of 1:100, 5:100 and 10:100. The duration of syntheses were 30 and 60 minutes for all temperatures and catalyst percentages. The synthesized materials were characterized by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and Raman spectroscopy.Keywords: Carbon nanotube, catalyst, catalytic chemical vapordeposition, iron
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895429 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670428 Derivation of Empirical Formulae to Predict Pressure and Impulsive Asymptotes for P-I Diagrams of One-way RC Panels
Authors: Azrul A. Mutalib, Masoud Abedini, Shahrizan Baharom, Hong Hao
Abstract:
There are only limited studies that directly correlate the increase in reinforced concrete (RC) panel structural capacities in resisting the blast loads with different RC panel structural properties in terms of blast loading characteristics, RC panel dimensions, steel reinforcement ratio and concrete material strength. In this paper, numerical analyses of dynamic response and damage of the one-way RC panel to blast loads are carried out using the commercial software LS-DYNA. A series of simulations are performed to predict the blast response and damage of columns with different level and magnitude of blast loads. The numerical results are used to develop pressureimpulse (P-I) diagrams of one-way RC panels. Based on the numerical results, the empirical formulae are derived to calculate the pressure and impulse asymptotes of the P-I diagrams of RC panels. The results presented in this paper can be used to construct P-I diagrams of RC panels with different concrete and reinforcement properties. The P-I diagrams are very useful to assess panel capacities in resisting different blast loads.
Keywords: One-way reinforced concrete (RC) panels, Explosive loads, LS-DYNA Software, Pressure-Impulse (P-I) diagram, Numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763427 Conceptual Design and Characterization of Contractile Water Jet Thruster Using IPMC Actuator
Authors: Muhammad Farid Shaari, Zahurin Samad
Abstract:
This paper presents the design, development and characterization of contractile water jet thruster (CWJT) for mini underwater robot. Instead of electric motor, this CWJT utilizes the Ionic Polymer Metal Composite (IPMC) as the actuator to generate the water jet. The main focus of this paper is to analyze the conceptual design of the proposed CWJT which would determine the thrust force value, jet flow behavior and actuator’s stress. Those thrust force and jet flow studies were carried out using Matlab/Simscape simulation software. The actuator stress had been analyzed using COSMOS simulation software. The results showed that there was no significant change for jet velocity at variable cross sectional nozzle area. However, a significant change was detected for jet velocity at different nozzle cross sectional area ratio which was up to 37%. The generated thrust force has proportional relation to the nozzle cross sectional area.
Keywords: Contractile water jet thruster, IPMC actuator, Thrust force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226426 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design
Authors: A. Thakur, P. S. Panesar, M. S. Saini
Abstract:
Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio, and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs, ψ, and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively.
Keywords: Emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323425 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development
Authors: Ambra Giovannelli, Erika Maria Archilei
Abstract:
The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.
Keywords: Energy saving, organic fluids, radial turbine, refrigeration plant, vapor compression systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219424 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer
Authors: K. Benyounes, A. Benmounah
Abstract:
Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10% wt) in presence of superplasticizer (0.5% wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel- Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.
Keywords: Cement grout, bentonite, superplasticizer, viscosity, yield stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3566423 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller
Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.
Abstract:
This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.
Keywords: Wind, grid, PMSG, MPPT, OTSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898422 Magnesium Foliar Application and Phosphorien Soil Inoculation Positively Affect Pisum sativum L. Plants Grown on Sandy Calcareous Soil
Authors: Saad M. Howladar, Ashraf Sh. Osman, Mostafa M. Rady, Hassan S. Al-Zahrani
Abstract:
The effects of soil inoculation with phosphorien-containing phosphate-dissolving bacteria (PDB) and/or magnesium (Mg) foliar application at the rates of 0, 0.5 and 1mM on growth, green pod and seed yields, and chemical constituents of Pisum sativum L. grown on a sandy calcareous soil were investigated. Results indicated that PDB and/or Mg significantly increased shoot length, number of branches plant–1, total leaf area plant–1 and canopy dry weight plant–1, leaf contents of pigments, soluble sugars, free proline, nitrogen, phosphorus, potassium, magnesium, and calcium, and Ca/Na ratio, while leaf Na content was reduced. PDB and/or Mg also increased green pod and seed yields. We concluded that PDB and Mg have pronounced positive effects on Pisum sativum L. plants grown on sandy calcareous soil. PDB and Mg, therefore, have the potential to be applied for various crops to overcome the adverse effects of the newly-reclaimed sandy calcareous soils.
Keywords: Bio-P-fertilizer, Mg foliar application, Newly-reclaimed soils, Pisum sativum L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2930421 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe
Authors: J. Kloypayan, W. Pimpakan
Abstract:
The pipe taper thread measurement and uncertainty normally used the four-wire probe according to the JIS B 0262. Besides, according to the EA-10/10 standard, the pipe thread could be measured using the three-wire probe. This research proposed to use the three-wire probe measuring the pitch diameter of the pipe taper thread. The measuring accessory component was designed and made, then, assembled to one side of the ULM 828 CiM machine. Therefore, this machine could be used to measure and calibrate both the pipe thread and the pipe taper thread. The equations and the expanded uncertainty for pitch diameter measurement were formulated. After the experiment, the results showed that the pipe taper thread had the pitch diameter equal to 19.165mm and the expanded uncertainty equal to 1.88µm. Then, the experiment results were compared to the results from the National Institute of Metrology Thailand. The equivalence ratio from the comparison showed that both results were related. Thus, the proposed method of using the three-wire probe measured the pitch diameter of the pipe taper thread was acceptable.
Keywords: Pipe taper thread, Three-wire probe, Measure and Calibration, The Universal length measuring machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7105420 In Vitro Study of Coded Transmission in Synthetic Aperture Ultrasound Imaging Systems
Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski
Abstract:
In the paper the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging is presented. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Moreover signal-to-noise ratio and penetration depth are improved while maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16- bit Golay coded sequences at nominal frequency 4 MHz was used. To generate a spherical wave covering the full image region a single element transmission aperture was used and all the elements received the echo signals. The comparison of 2D ultrasound images of the tissue mimicking phantom and in vitro measurements of the beef liver is presented to illustrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.Keywords: Golay coded sequences, radiation pattern, signal processing, synthetic aperture, ultrasound imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676419 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk
Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi
Abstract:
The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.
Keywords: Daylight, window, orientation, energy consumption, design builder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086