Search results for: Direct numerical simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5903

Search results for: Direct numerical simulation

4283 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing

Authors: Sunil Patel, Pallab Maji

Abstract:

To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.

Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
4282 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps

Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev

Abstract:

The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.

Keywords: Computing experiment, hydroelasticity, physical experiment, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
4281 Methodology of Realization for Supervisor and Simulator Dedicated to a Semiconductor Research and Production Factory

Authors: Hanane Ondella, Pierre Ladet, David Ferrand, Pat Sloan

Abstract:

In the micro and nano-technology industry, the «clean-rooms» dedicated to manufacturing chip, are equipped with the most sophisticated equipment-tools. There use a large number of resources in according to strict specifications for an optimum working and result. The distribution of «utilities» to the production is assured by teams who use a supervision tool. The studies show the interest to control the various parameters of production or/and distribution, in real time, through a reliable and effective supervision tool. This document looks at a large part of the functions that the supervisor must assure, with complementary functionalities to help the diagnosis and simulation that prove very useful in our case where the supervised installations are complexed and in constant evolution.

Keywords: Control-Command, evolution, non regression, performances, real time, simulation, supervision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
4280 An Improved QRS Complex Detection for Online Medical Diagnosis

Authors: I. L. Ahmad, M. Mohamed, N. A. Ab. Ghani

Abstract:

This paper presents the work of signal discrimination specifically for Electrocardiogram (ECG) waveform. ECG signal is comprised of P, QRS, and T waves in each normal heart beat to describe the pattern of heart rhythms corresponds to a specific individual. Further medical diagnosis could be done to determine any heart related disease using ECG information. The emphasis on QRS Complex classification is further discussed to illustrate the importance of it. Pan-Tompkins Algorithm, a widely known technique has been adapted to realize the QRS Complex classification process. There are eight steps involved namely sampling, normalization, low pass filter, high pass filter (build a band pass filter), derivation, squaring, averaging and lastly is the QRS detection. The simulation results obtained is represented in a Graphical User Interface (GUI) developed using MATLAB.

Keywords: ECG, Pan Tompkins Algorithm, QRS Complex, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567
4279 Hybrid Association Control Scheme and Load Balancing in Wireless LANs

Authors: Chutima Prommak, Airisa Jantaweetip

Abstract:

This paper presents a hybrid association control scheme that can maintain load balancing among access points in the wireless LANs and can satisfy the quality of service requirements of the multimedia traffic applications. The proposed model is mathematically described as a linear programming model. Simulation study and analysis were conducted in order to demonstrate the performance of the proposed hybrid load balancing and association control scheme. Simulation results shows that the proposed scheme outperforms the other schemes in term of the percentage of blocking and the quality of the data transfer rate providing to the multimedia and real-time applications.

Keywords: Association control, Load balancing, Wireless LANs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
4278 Adaptive Fuzzy Control on EDF Scheduling

Authors: Xiangbin Zhu

Abstract:

EDF (Early Deadline First) algorithm is a very important scheduling algorithm for real- time systems . The EDF algorithm assigns priorities to each job according to their absolute deadlines and has good performance when the real-time system is not overloaded. When the real-time system is overloaded, many misdeadlines will be produced. But these misdeadlines are not uniformly distributed, which usually focus on some tasks. In this paper, we present an adaptive fuzzy control scheduling based on EDF algorithm. The improved algorithm can have a rectangular distribution of misdeadline ratios among all real-time tasks when the system is overloaded. To evaluate the effectiveness of the improved algorithm, we have done extensive simulation studies. The simulation results show that the new algorithm is superior to the old algorithm.

Keywords: Fuzzy control, real-time systems, EDF, misdeadline ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
4277 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes

Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-ariyaskul

Abstract:

The production of Dimethyl acetal, Isovaleradehyde and Pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of Acetaldehyde, Methanol, Ethyl Acetate, 1-propanol, water, iso-amyl alcohol and iso-butyl alcohol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.

Keywords: Dimethyl acetal, Pyridine, wine, Aspen Plus, Isovaleradehyde, polymeric precursors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
4276 Predicting and Mitigating Dredging DispersionImpact: A Case of Phuket Port, Thailand

Authors: Cherdvong Saengsupavanich

Abstract:

Dredging activities inevitably cause sediment dispersion. In certain locations, where there are important ecological areas such as mangroves or coral reefs, carefully planning the dredging can significantly reduce negative impacts. This article utilizes the dredging at Phuket port, Thailand, as a case study to demonstrate how computer simulations can be helpful to protect existing coral reefs. A software package named MIKE21 was applied. Necessary information required by the simulations was gathered. After calibrating and verifying the model, various dredging scenario were simulated to predict spoil movement. The simulation results were used as guidance to setting up an environmental measure. Finally, the recommendation to dredge during flood tide with silt curtains installed was made.

Keywords: Coastal simulation, Dredging, Environmentalprotection, Port. Coastal engineering, Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
4275 Investigation of Bubble Growth during Nucleate Boiling Using CFD

Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu

Abstract:

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained are compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Keywords: Bubble growth, computational fluid dynamics, detachment diameter, terminal velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
4274 Numerical Solution for Elliptical Crack with Developing Cusps Subject to Shear Loading

Authors: Nik Mohd Asri Nik Long, Koo Lee Feng, Zainidin K. Eshkuvatov, A. A. Khaldjigitov

Abstract:

This paper study the behavior of the solution at the crack edges for an elliptical crack with developing cusps, Ω in the plane elasticity subjected to shear loading. The problem of finding the resulting shear stress can be formulated as a hypersingular integral equation over Ω and it is then transformed into a similar equation over a circular region, D, using conformal mapping. An appropriate collocation points are chosen on the region D to reduce the hypersingular integral equation into a system of linear equations with (2N+1)(N+1) unknown coefficients, which will later be used in the determination of shear stress intensity factors and maximum shear stress intensity. Numerical solution for the considered problem are compared with the existing asymptotic solution, and displayed graphically. Our results give a very good agreement to the existing asymptotic solutions.

Keywords: Elliptical crack, stress intensity factors, hyper singular integral equation, shear loading, conformal mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
4273 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.

Keywords: Cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
4272 Performance Analysis of QS-CDMA Systems

Authors: Cuiran Li, Jianli Xie, Chengshu Li

Abstract:

In the paper, the performance of quasi-synchronous CDMA (QS-CDMA) system, which can allow an increased timing error in synchronized access, is discussed. Average BER performance of the system is analyzed in the condition of different access timing error and different asynchronous users by simulation in AWGN channel. The results show that QS-CDMA system is shown to have great performance gain over the asynchronous system when access timing error is within a few chips and asynchronous users is tolerable. However, with access timing error increasing and asynchronous users increasing, the performance of QS-CDMA will degrade. Also, we can determine the number of tolerable asynchronous users for different access timing error by simulation figures.

Keywords: Code-division multiple access, Quasi-SynchronousCDMA, Access timing error

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
4271 Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip

Authors: M. Meftahi, M. Hoseinzadeh, S. A. Naeini

Abstract:

Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies.

Keywords: Adjacent foundation, bearing capacity, reinforcements, settlement, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
4270 Simulation of the Pedestrian Flow in the Tawaf Area Using the Social Force Model

Authors: Zarita Zainuddin, Kumatha Thinakaran, Mohammed Shuaib

Abstract:

In today-s modern world, the number of vehicles is increasing on the road. This causes more people to choose walking instead of traveling using vehicles. Thus, proper planning of pedestrians- paths is important to ensure the safety of pedestrians in a walking area. Crowd dynamics study the pedestrians- behavior and modeling pedestrians- movement to ensure safety in their walking paths. To date, many models have been designed to ease pedestrians- movement. The Social Force Model is widely used among researchers as it is simpler and provides better simulation results. We will discuss the problem regarding the ritual of circumambulating the Ka-aba (Tawaf) where the entrances to this area are usually congested which worsens during the Hajj season. We will use the computer simulation model SimWalk which is based on the Social Force Model to simulate the movement of pilgrims in the Tawaf area. We will first discuss the effect of uni and bi-directional flows at the gates. We will then restrict certain gates to the area as the entrances only and others as exits only. From the simulations, we will study the effect of the distance of other entrances from the beginning line and their effects on the duration of pilgrims circumambulate Ka-aba. We will distribute the pilgrims at the different entrances evenly so that the congestion at the entrances can be reduced. We would also discuss the various locations and designs of barriers at the exits and its effect on the time taken for the pilgrims to exit the Tawaf area.

Keywords: circumambulation, Ka'aba, pedestrian flow, SFM, Tawaf , entrance, exit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
4269 Numerical Study of Mixed Convection Coupled to Radiation in a Square Cavity with a Lid-Driven

Authors: Mohamed Amine Belmiloud, Nord Eddine Sad Chemloul

Abstract:

In this study, we investigated numerically heat transfer by mixed convection coupled to radiation in a square cavity; the upper horizontal wall is movable. The purpose of this study is to see the influence of the emissivity ε and the varying of the Richardson number Ri on the variation of average Nusselt number Nu. The vertical walls of the cavity are differentially heated, the left wall is maintained at a uniform temperature higher than the right wall, and the two horizontal walls are adiabatic. The finite volume method is used for solving the dimensionless Governing Equations. Emissivity values used in this study are ranged between 0 and 1, the Richardson number in the range 0.1 to 10. The Rayleigh number is fixed to Ra=104 and the Prandtl number is maintained constant Pr=0.71. Streamlines, isothermal lines and the average Nusselt number are presented according to the surface emissivity. The results of this study show that the Richardson number Ri and emissivity ε affect the average Nusselt number.

Keywords: Numerical study, mixed convection, square cavity, wall emissivity, lid-driven.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
4268 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling

Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh

Abstract:

Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.

Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
4267 Numerical Analysis of the Performance of the DU91-W2-250 Airfoil for Straight-Bladed Vertical-Axis Wind Turbine Application

Authors: M. Raciti Castelli, G. Grandi, E. Benini

Abstract:

This paper presents a numerical analysis of the performance of a three-bladed Darrieus vertical-axis wind turbine based on the DU91-W2-250 airfoil. A complete campaign of 2-D simulations, performed for several values of tip speed ratio and based on RANS unsteady calculations, has been performed to obtain the rotor torque and power curves. Rotor performances have been compared with the results of a previous work based on the use of the NACA 0021 airfoil. Both the power coefficient and the torque coefficient have been determined as a function of the tip speed ratio. The flow field around rotor blades has also been analyzed. As a final result, the performance of the DU airfoil based rotor appears to be lower than the one based on the NACA 0021 blade section. This behavior could be due to the higher stall characteristics of the NACA profile, being the separation zone at the trailing edge more extended for the DU airfoil.

Keywords: CFD, vertical axis wind turbine, DU91-W2-250, NACA 0021

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3346
4266 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy

Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan

Abstract:

The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.

Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107
4265 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
4264 Application of Costing System in the Small and Medium Sized Enterprises (SME) in Turkey

Authors: Hamide Özyürek, Metin Yılmaz

Abstract:

Standard processes, similar and limited production lines, the production of high direct costs will be more accurate than the use of parts of the traditional cost systems in the literature. However, direct costs, overhead expenses, in turn, decrease the burden of increasingly sophisticated production facilities, a situation that led the researchers to look for the cost of traditional systems of alternative techniques. Variety cost management approaches for example Total quality management (TQM), just-in-time (JIT), benchmarking, kaizen costing, targeting cost, life cycle costs (LLC), activity-based costing (ABC) value engineering have been introduced. Management and cost applications have changed over the past decade and will continue to change. Modern cost systems can provide relevant and accurate cost information. These methods provide the decisions about customer, product and process improvement. The aim of study is to describe and explain the adoption and application of costing systems in SME. This purpose reports on a survey conducted during 2014 small and medium sized enterprises (SME) in Ankara. The survey results were evaluated using SPSS18 package program.

Keywords: Cost Accounting, Costing, Modern Costing Systems, Managerial Accounting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5319
4263 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section

Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie

Abstract:

The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.

Keywords: Contraction, Electroviscous, Microfluidic, Numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
4262 Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu

Authors: Sherif. S. Nafee, Ameer. K. Al-Ramady, Salem. A. Shaheen

Abstract:

The analytical prediction of the decay heat results from the fast neutron fission of actinides was initiated under a project, 10-MAT1134-3, funded by king Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, managed by a team from King Abdulaziz University (KAU), Saudi Arabia, and supervised by Argonne National Laboratory (ANL) has collaborated with KAU's team to assist in the computational analysis. In this paper, the numerical solution of coupled linear differential equations that describe the decays and buildups of minor fission product MFA, has been used to predict the total decay heat and its components from the fast neutron fission of 235U and 239Pu. The reliability of the present approach is illustrated via systematic comparisons with the measurements reported by the University of Tokyo, in YAYOI reactor.

Keywords: Decay heat, fast neutron fission, and Numerical Solution of Linear Differential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
4261 Transient Solution of an Incompressible Viscous Flow in a Channel with Sudden Expansion/Contraction

Authors: Durga C. Dalal, Swapan K. Pandit

Abstract:

In this paper, a numerical study has been made to analyze the transient 2-D flows of a viscous incompressible fluid through channels with forward or backward constriction. Problems addressed include flow through sudden contraction and sudden expansion channel geometries with rounded and increasingly sharp reentrant corner. In both the cases, numerical results are presented for the separation and reattachment points, streamlines, vorticity and flow patterns. A fourth order accurate compact scheme has been employed to efficiently capture steady state solutions of the governing equations. It appears from our study that sharpness of the throat in the channel is one of the important parameters to control the strength and size of the separation zone without modifying the general flow patterns. The comparison between the two cases shows that the upstream geometry plays a significant role on vortex growth dynamics.

Keywords: Forward and backward constriction, HOC scheme, Incompressible viscous flows, Separation and reattachment points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
4260 Equatorial Symmetry of Chaotic Solutions in Boussinesq Convection in a Rotating Spherical Shell

Authors: Keiji Kimura, Shin-ichi Takehiro, Michio Yamada

Abstract:

We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the inner and outer sphere rotation due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number and the Taylor number are fixed to 0.4, 1 and 5002, respectively. The inertial moments of the inner and outer spheres are fixed to about 0.22 and 100, respectively. The Rayleigh number is varied from 2.6 × 104 to 3.4 × 104. In this parameter range, convective solutions transit from equatorially symmetric quasiperiodic ones to equatorially asymmetric chaotic ones as the Rayleigh number is increased. The transition route in the system allowing rotation of both the spheres is different from that in the co-rotating system, which means the inner and outer spheres rotate with the same constant angular velocity: the convective solutions transit as equatorially symmetric quasi-periodic solution → equatorially symmetric chaotic solution → equatorially asymmetric chaotic solution in the system allowing both the spheres rotation, while equatorially symmetric quasi-periodic solution → equatorially asymmetric quasiperiodic solution → equatorially asymmetric chaotic solution in the co-rotating system.

Keywords: thermal convection, numerical simulation, equatorial symmetry, quasi-periodic solution, chaotic solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
4259 Probabilistic Simulation of Triaxial Undrained Cyclic Behavior of Soils

Authors: Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan

Abstract:

In this paper, a probabilistic framework based on Fokker-Planck-Kolmogorov (FPK) approach has been applied to simulate triaxial cyclic constitutive behavior of uncertain soils. The framework builds upon previous work of the writers, and it has been extended for cyclic probabilistic simulation of triaxial undrained behavior of soils. von Mises elastic-perfectly plastic material model is considered. It is shown that by using probabilistic framework, some of the most important aspects of soil behavior under cyclic loading can be captured even with a simple elastic-perfectly plastic constitutive model.

Keywords: Elasto-plasticity, uncertainty, soils, Fokker-Planck equation, Fourier Spectral method, Finite Difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
4258 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504
4257 Improving the Voltage Level in High Voltage Direct Current Systems by Using Modular Multilevel Converter

Authors: G. Kishor Babu, B. Madhu Kiran

Abstract:

This paper presented an intend scheme of Modular-Multilevel-Converter (MMC) levels for move towering the practical conciliation flanked by the precision and divisional competence. The whole process is standard by a Thevenin-equivalent 133-level MMC model. Firstly the computation scheme of the fundamental limit imitation time step is offered to faithfully represent each voltage level of waveforms. Secondly the earlier industrial Improved Analytic Hierarchy Process (IAHP) is adopted to integrate the relative errors of all the input electrical factors interested in one complete virtual fault on each converter level. Thirdly the stable AC and DC ephemeral condition in virtual faults effects of all the forms stabilize and curve integral stand on the standard form. Finally the optimal MMC level will be obtained by the drown curves and it will give individual weights allowing for the precision and efficiency. And the competence and potency of the scheme are validated by model on MATLAB Simulink.

Keywords: Modular multilevel converter, improved analytic hierarchy process, ac and dc transient, high voltage direct current, voltage sourced converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
4256 Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror

Authors: Yiping Wang, Zhengqi Gu, Weiping Li, Xiaohui Lin

Abstract:

The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).

Keywords: Aerodynamic noise, BEM, DES, FW-H acousticanalogy, LES

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2929
4255 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve

Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin

Abstract:

Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.

Keywords: Laminar forced convection, nanofluid, curve, return bend, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
4254 Testing the Performance of Rival Warehousing Policies through Discrete Event Simulation

Authors: João Vilas-Boas, Abdul Suleman, Luis Moreira

Abstract:

This research tested the performance of alternative warehouse designs concerning the picking process. The chosen performance measures were Travel Distance and Total Fulfilment Time. An explanatory case study was built up around a model implemented with SIMUL8. Hypotheses were set by selecting outcomes from the literature survey matching popular empirical findings. 17.4% reductions were found for Total Fulfilment Time and Resource Utilisation. The latter was then used as a proxy for operational efficiency. Literal replication of theoretical data-patterns was considered as an internal validity sign. Assessing the estimated changes benefits ahead of implementation was found to be a contribution to practice.

Keywords: Warehouse discrete-event simulation, Storage policy selection and assessment, Performance evaluation of order picking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108