@article{(Open Science Index):https://publications.waset.org/pdf/11179,
	  title     = {Simulation of the Pedestrian Flow in the Tawaf Area Using the Social Force Model},
	  author    = {Zarita Zainuddin and  Kumatha Thinakaran and  Mohammed Shuaib},
	  country	= {},
	  institution	= {},
	  abstract     = {In today-s modern world, the number of vehicles is
increasing on the road. This causes more people to choose walking
instead of traveling using vehicles. Thus, proper planning of
pedestrians- paths is important to ensure the safety of pedestrians in a
walking area. Crowd dynamics study the pedestrians- behavior and
modeling pedestrians- movement to ensure safety in their walking paths.
To date, many models have been designed to ease pedestrians-
movement. The Social Force Model is widely used among researchers
as it is simpler and provides better simulation results. We will discuss
the problem regarding the ritual of circumambulating the Ka-aba
(Tawaf) where the entrances to this area are usually congested which
worsens during the Hajj season. We will use the computer simulation
model SimWalk which is based on the Social Force Model to simulate
the movement of pilgrims in the Tawaf area. We will first discuss the
effect of uni and bi-directional flows at the gates. We will then restrict
certain gates to the area as the entrances only and others as exits only.
From the simulations, we will study the effect of the distance of other
entrances from the beginning line and their effects on the duration of
pilgrims circumambulate Ka-aba. We will distribute the pilgrims at the
different entrances evenly so that the congestion at the entrances can be
reduced. We would also discuss the various locations and designs of
barriers at the exits and its effect on the time taken for the pilgrims to
exit the Tawaf area.},
	    journal   = {International Journal of Mathematical and Computational Sciences},
	  volume    = {4},
	  number    = {12},
	  year      = {2010},
	  pages     = {1489 - 1494},
	  ee        = {https://publications.waset.org/pdf/11179},
	  url   	= {https://publications.waset.org/vol/48},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 48, 2010},