Search results for: test data
7862 Authentication and Data Hiding Using a Reversible ROI-based Watermarking Scheme for DICOM Images
Authors: Osamah M. Al-Qershi, Khoo Bee Ee
Abstract:
In recent years image watermarking has become an important research area in data security, confidentiality and image integrity. Many watermarking techniques were proposed for medical images. However, medical images, unlike most of images, require extreme care when embedding additional data within them because the additional information must not affect the image quality and readability. Also the medical records, electronic or not, are linked to the medical secrecy, for that reason, the records must be confidential. To fulfill those requirements, this paper presents a lossless watermarking scheme for DICOM images. The proposed a fragile scheme combines two reversible techniques based on difference expansion for patient's data hiding and protecting the region of interest (ROI) with tamper detection and recovery capability. Patient's data are embedded into ROI, while recovery data are embedded into region of non-interest (RONI). The experimental results show that the original image can be exactly extracted from the watermarked one in case of no tampering. In case of tampered ROI, tampered area can be localized and recovered with a high quality version of the original area.Keywords: DICOM, reversible, ROI-based, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17187861 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317860 Stego Machine – Video Steganography using Modified LSB Algorithm
Authors: Mritha Ramalingam
Abstract:
Computer technology and the Internet have made a breakthrough in the existence of data communication. This has opened a whole new way of implementing steganography to ensure secure data transfer. Steganography is the fine art of hiding the information. Hiding the message in the carrier file enables the deniability of the existence of any message at all. This paper designs a stego machine to develop a steganographic application to hide data containing text in a computer video file and to retrieve the hidden information. This can be designed by embedding text file in a video file in such away that the video does not loose its functionality using Least Significant Bit (LSB) modification method. This method applies imperceptible modifications. This proposed method strives for high security to an eavesdropper-s inability to detect hidden information.Keywords: Data hiding, LSB, Stego machine, VideoSteganography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42687859 Generating State-Based Testing Models for Object-Oriented Framework Interface Classes
Authors: Jehad Al Dallal, Paul Sorenson
Abstract:
An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and the specifications of their methods. As part of the development life cycle, it is required to test the implementations of the FICs. Building a testing model to express the behavior of a class is an essential step for the generation of the class-based test cases. The testing model has to be consistent with the specifications provided for the hooks. State-based models consisting of states and transitions are testing models well suited to objectoriented software. Typically, hand-construction of a state-based model of a class behavior is expensive, error-prone, and may result in constructing an inconsistent model with the specifications of the class methods, which misleads verification results. In this paper, a technique is introduced to automatically synthesize a state-based testing model for FICs using the specifications provided for the hooks. A tool that supports the proposed technique is introduced.Keywords: Framework interface classes, hooks, state-basedtesting, testing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12267858 Data Projects for “Social Good”: Challenges and Opportunities
Authors: Mikel Niño, Roberto V. Zicari, Todor Ivanov, Kim Hee, Naveed Mushtaq, Marten Rosselli, Concha Sánchez-Ocaña, Karsten Tolle, José Miguel Blanco, Arantza Illarramendi, Jörg Besier, Harry Underwood
Abstract:
One of the application fields for data analysis techniques and technologies gaining momentum is the area of social good or “common good”, covering cases related to humanitarian crises, global health care, or ecology and environmental issues, among others. The promotion of data-driven projects in this field aims at increasing the efficacy and efficiency of social initiatives, improving the way these actions help humanity in general and people in need in particular. This application field, however, poses its own barriers and challenges when developing data-driven projects, lagging behind in comparison with other scenarios. These challenges derive from aspects such as the scope and scale of the social issue to solve, cultural and political barriers, the skills of main stakeholders and the technological resources available, the motivation to be engaged in such projects, or the ethical and legal issues related to sensitive data. This paper analyzes the application of data projects in the field of social good, reviewing its current state and noteworthy initiatives, and presenting a framework covering the key aspects to analyze in such projects. The goal is to provide guidelines to understand the main challenges and opportunities for this type of data project, as well as identifying the main differential issues compared to “classical” data projects in general. A case study is presented on the initial steps and stakeholder analysis of a data project for the inclusion of refugees in the city of Frankfurt, Germany, in order to empirically confront the framework with a real example.Keywords: Data-Driven projects, humanitarian operations, personal and sensitive data, social good, stakeholders analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17907857 Energy Consumption Forecast Procedure for an Industrial Facility
Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova
Abstract:
We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas, the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself, implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.Keywords: Energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17197856 Energy Interaction among HVAC and Supermarket Environment
Authors: D. Woradechjumroen, H. Li, Y. Yu
Abstract:
Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easyto- use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions).The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study the FDD research for supermarkets in future.
Keywords: Energy interaction, HVAC, R-value, Supermarket buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32227855 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.
Keywords: Authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6147854 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data
Authors: Rohan Putatunda, Aryya Gangopadhyay
Abstract:
Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).
Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4307853 An Educational Data Mining System for Advising Higher Education Students
Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy
Abstract:
Educational data mining is a specific data mining field applied to data originating from educational environments, it relies on different approaches to discover hidden knowledge from the available data. Among these approaches are machine learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.
In our research, we propose a “Student Advisory Framework” that utilizes classification and clustering to build an intelligent system. This system can be used to provide pieces of consultations to a first year university student to pursue a certain education track where he/she will likely succeed in, aiming to decrease the high rate of academic failure among these students. A real case study in Cairo Higher Institute for Engineering, Computer Science and Management is presented using real dataset collected from 2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.
Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52127852 Study on Optimization Design of Pressure Hull for Underwater Vehicle
Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran
Abstract:
In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.
Keywords: Parameterization, response surface, structure optimization, pressure hull.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11617851 Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia
Authors: Rana M. Zeina, Laila AL-Ayadhi, Shahid Bashir
Abstract:
The association between sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a Neuropsychological Test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/little circle (BLC), Simple Reaction Time (SRT) Intra /Extra dimensional set shift (IED), Spatial recognition memory (SRM), were administered to 14 ASDs children with sensory problems compared to 13 ASDs without sensory problems aged 3 to 12 with IQ of above 70. ASDs individuals with sensory problems performed worse than the ASDs group without sensory problems on comprehension, learning, reversal and simple reaction time tasks, and no significant difference between the two groups was recorded in terms of the visual memory and visual comprehension tasks. The findings of this study suggest that ASDs children with sensory problems are facing deficits in learning, comprehension, reversal, and speed of response to a stimulus.
Keywords: Visual memory, Attention, Autism Spectrum Disorders (ASDs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25347850 Auto Classification for Search Intelligence
Authors: Lilac A. E. Al-Safadi
Abstract:
This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.Keywords: Information Processing on the Web, Data Mining, Document Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16197849 Behavior of Confined Columns under Different Techniques
Authors: Mostafa Osman, Ata El-Kareim Shoeib Soliman
Abstract:
Since columns are the most important elements of the structures, failure of one column in a critical location can cause a progressive collapse. In this respect, the repair and strengthening of columns is a very important subject to reduce the building failure and to keep the columns capacity. Twenty columns with different parameters is tested and analysis. Eleven typical confined reinforced concrete (RC) columns with different types of techniques are assessment. And also, four confined concrete columns with plastic tube (PVC) are tested with and with four paralleling tested of unconfined plain concrete. The techniques of confined RC columns are mortar strengthening, Steel rings strengthening, FRP strengthening. Moreover, the technique of confined plain concrete (PC) column is used PVC tubes. The columns are tested under uniaxial compressive loads studied the effect of confinement on the structural behavior of circular RC columns. Test results for each column are presented in the form of crack patterns, stress-strain curves. Test results show that confining of the RC columns using different techniques of strengthening results significant improvement of the general behavior of the columns and can used in construction. And also, tested confined PC columns with PVC tubes results shown that the confined PC with PVC tubes can be used in economical building. The theoretical model for predicted column capacity is founded with experimental factor depends on the confined techniques used and the strain reduction.
Keywords: Confined reinforced concrete column, CFRP, GFRP, Mortar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26397848 Determinants of the Income of Household Level Coir Yarn Labourers in Sri Lanka
Authors: G. H. B. Dilhari, A. A. D. T. Saparamadu
Abstract:
Sri Lanka is one of the prominent countries for the coir production. The coir is one of the by-products of the coconut and the coir industry is considered to be one of the traditional industries in Sri Lanka. Because of the inherent nature of the coir industry, labourers play a significant role in the coir production process. The study has analyzed the determinants of the income of the household level coir yarn labourers. The study was conducted in the Kumarakanda Grama Niladhari division. Simple random sampling was used to generate a sample of 100 household level coir yarn labourers and structured questionnaire, personal interviews, and discussion were performed to gather the required data. The obtained data were statistically analyzed by using Statistical Package for Social Science (SPSS) software. Mann-Whitney U and Kruskal-Wallis test were performed for mean comparison. The findings revealed that the household level coir yarn industry is dominated by the female workers and it was identified that fewer numbers of workers have engaged in this industry as the main occupation. In addition to that, elderly participation in the industry is higher than the younger participation and most of them have engaged in the industry as a source of extra income. Level of education, the methods of engagement, satisfaction, engagement in the industry by the next generation, support from the government, method of government support, working hours per day, employed as a main job, number of completed units per day, suffering from job related diseases and type of the diseases were related with income level of household level coir yarn laboures. The recommendations as to flourish in future includes, technological transformation for coir yarn production, strengthening the raw material base and regulating the raw material supply, introduction of new technologies, markets and training programmes, the establishment of the labourers’ association, the initiation of micro credit schemes and better consideration about the job oriented diseases.Keywords: Coir, Income, Sri Lanka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15237847 Retrieval of Relevant Visual Data in Selected Machine Vision Tasks: Examples of Hardware-based and Software-based Solutions
Authors: Andrzej Śluzek
Abstract:
To illustrate diversity of methods used to extract relevant (where the concept of relevance can be differently defined for different applications) visual data, the paper discusses three groups of such methods. They have been selected from a range of alternatives to highlight how hardware and software tools can be complementarily used in order to achieve various functionalities in case of different specifications of “relevant data". First, principles of gated imaging are presented (where relevance is determined by the range). The second methodology is intended for intelligent intrusion detection, while the last one is used for content-based image matching and retrieval. All methods have been developed within projects supervised by the author.
Keywords: Relevant visual data, gated imaging, intrusion detection, image matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13947846 SOA-Based Mobile Application for Crime Control in Thailand
Authors: Jintana Khemprasit, Vatcharaporn Esichaikul
Abstract:
Crime is a major societal problem for most of the world's nations. Consequently, the police need to develop new methods to improve their efficiency in dealing with these ever increasing crime rates. Two of the common difficulties that the police face in crime control are crime investigation and the provision of crime information to the general public to help them protect themselves. Crime control in police operations involves the use of spatial data, crime data and the related crime data from different organizations (depending on the nature of the analysis to be made). These types of data are collected from several heterogeneous sources in different formats and from different platforms, resulting in a lack of standardization. Moreover, there is no standard framework for crime data collection, integration and dissemination through mobile devices. An investigation into the current situation in crime control was carried out to identify the needs to resolve these issues. This paper proposes and investigates the use of service oriented architecture (SOA) and the mobile spatial information service in crime control. SOA plays an important role in crime control as an appropriate way to support data exchange and model sharing from heterogeneous sources. Crime control also needs to facilitate mobile spatial information services in order to exchange, receive, share and release information based on location to mobile users anytime and anywhere.Keywords: Crime Control, Geographic Information System (GIS), Mobile GIS, Service Oriented Architecture (SOA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25327845 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions
Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo
Abstract:
The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.Keywords: RSM, dependent variable, independent variables, efficiency, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19887844 Multidimensional and Data Mining Analysis for Property Investment Risk Analysis
Authors: Nur Atiqah Rochin Demong, Jie Lu, Farookh Khadeer Hussain
Abstract:
Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.Keywords: Uncertainty factors, data mining, multidimensional data model, risk analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29217843 Computational Aspects of Regression Analysis of Interval Data
Authors: Michal Cerny
Abstract:
We consider linear regression models where both input data (the values of independent variables) and output data (the observations of the dependent variable) are interval-censored. We introduce a possibilistic generalization of the least squares estimator, so called OLS-set for the interval model. This set captures the impact of the loss of information on the OLS estimator caused by interval censoring and provides a tool for quantification of this effect. We study complexity-theoretic properties of the OLS-set. We also deal with restricted versions of the general interval linear regression model, in particular the crisp input – interval output model. We give an argument that natural descriptions of the OLS-set in the crisp input – interval output cannot be computed in polynomial time. Then we derive easily computable approximations for the OLS-set which can be used instead of the exact description. We illustrate the approach by an example.
Keywords: Linear regression, interval-censored data, computational complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14697842 The Association between Affective States and Sexual/Health-Related Status among Men Who Have Sex with Men in China: An Exploration Study Using Social Media Data
Authors: Zhi-Wei Zheng, Zhong-Qi Liu, Jia-Ling Qiu, Shan-Qing Guo, Zhong-Wei Jia, Chun Hao
Abstract:
Objectives: The purpose of this study was to understand and examine the association between diurnal mood variation and sexual/health-related status among men who have sex with men (MSM) using data from MSM Chinese Twitter messages. The study consists of 843,745 postings of 377,610 MSM users located in Guangdong that were culled from the MSM Chinese Twitter App. Positive affect, negative affect, sexual related behaviors, and health-related status were measured using the Simplified Chinese Linguistic Inquiry and Word Count. Emotions, including joy, sadness, anger, fear, and disgust were measured using the Weibo Basic Mood Lexicon. A positive sentiment score and a positive emotions score were also calculated. Linear regression models based on a permutation test were used to assess associations between affective states and sexual/health-related status. In the results, 5,871 active MSM users and their 477,374 postings were finally selected. MSM expressed positive affect and joy at 8 a.m. and expressed negative affect and negative emotions between 2 a.m. and 4 a.m. In addition, 25.1% of negative postings were directly related to health and 13.4% reported seeking social support during that sensitive period. MSM who were senior, educated, overweight or obese, self-identified as performing a versatile sex role, and with less followers, more followers, and less chat groups mainly expressed more negative affect and negative emotions. MSM who talked more about sexual-related behaviors had a higher positive sentiment score (β=0.29, p < 0.001) and a higher positive emotions score (β = 0.16, p < 0.001). MSM who reported more on their health status had a lower positive sentiment score (β = -0.83, p < 0.001) and a lower positive emotions score (β = -0.37, p < 0.001). The study concluded that psychological intervention based on an app for MSM should be conducted, as it may improve mental health.
Keywords: Affect, men who have sex with men, sexual-related behaviors, health-related status, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7557841 Controlling 6R Robot by Visionary System
Authors: Azamossadat Nourbakhsh, Moharram Habibnezhad Korayem
Abstract:
In the visual servoing systems, the data obtained by Visionary is used for controlling robots. In this project, at first the simulator which was proposed for simulating the performance of a 6R robot before, was examined in terms of software and test, and in the proposed simulator, existing defects were obviated. In the first version of simulation, the robot was directed toward the target object only in a Position-based method using two cameras in the environment. In the new version of the software, three cameras were used simultaneously. The camera which is installed as eye-inhand on the end-effector of the robot is used for visual servoing in a Feature-based method. The target object is recognized according to its characteristics and the robot is directed toward the object in compliance with an algorithm similar to the function of human-s eyes. Then, the function and accuracy of the operation of the robot are examined through Position-based visual servoing method using two cameras installed as eye-to-hand in the environment. Finally, the obtained results are tested under ANSI-RIA R15.05-2 standard.Keywords: 6R Robot , camera, visual servoing, Feature-based visual servoing, Position-based visual servoing, Performance tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13847840 Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory
Authors: Soon-Hyun Park, Takami Matsuo
Abstract:
This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18727839 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland
Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi
Abstract:
Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.
Keywords: Ecosystem, business model, personal data, preventive healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11397838 Effect of Curing Conditions on Strength of Fly ash-based Self-Compacting Geopolymer Concrete
Authors: Fareed Ahmed Memon, Muhd Fadhil Nuruddin, Samuel Demie, Nasir Shafiq
Abstract:
This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the compressive strength of self-compacting geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time and curing temperature in the range of 24-96 hours and 60-90°C respectively. The essential workability properties of freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and resistance to segregation as specified by guidelines on Self-compacting Concrete by EFNARC were satisfied. Test results indicate that longer curing time and curing the concrete specimens at higher temperatures result in higher compressive strength. There was increase in compressive strength with the increase in curing time; however increase in compressive strength after 48 hours was not significant. Concrete specimens cured at 70°C produced the highest compressive strength as compared to specimens cured at 60°C, 80°C and 90°C.Keywords: Geopolymer Concrete, Self-compacting Geopolymerconcrete, Compressive strength, Curing time, Curing temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57517837 Maternal Health Outcome and Economic Growth in Sub-Saharan Africa: A Dynamic Panel Analysis
Authors: Okwan Frank
Abstract:
Maternal health outcome is one of the major population development challenges in Sub-Saharan Africa. The region has the highest maternal mortality ratio, despite the progressive economic growth in the region during the global economic crisis. It has been hypothesized that increase in economic growth will reduce the level of maternal mortality. The purpose of this study is to investigate the existence of the negative relationship between health outcome proxy by maternal mortality ratio and economic growth in Sub-Saharan Africa. The study used the Pooled Mean Group estimator of ARDL Autoregressive Distributed Lag (ARDL) and the Kao test for cointegration to examine the short-run and long-run relationship between maternal mortality and economic growth. The results of the cointegration test showed the existence of a long-run relationship between the variables considered for the study. The long-run result of the Pooled Mean group estimates confirmed the hypothesis of an inverse relationship between maternal health outcome proxy by maternal mortality ratio and economic growth proxy by Gross Domestic Product (GDP) per capita. Thus increasing economic growth by investing in the health care systems to reduce pregnancy and childbirth complications will help reduce maternal mortality in the sub-region.
Keywords: Economic growth, maternal mortality, pool mean group, Sub-Saharan Africa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5867836 Satisfaction of Distance Education University Students with the Use of Audio Media as a Medium of Instruction: The Case of Mountains of the Moon University in Uganda
Authors: Mark Kaahwa, Chang Zhu, Moses Muhumuza
Abstract:
This study investigates the satisfaction of distance education university students (DEUS) with the use of audio media as a medium of instruction. Studying students’ satisfaction is vital because it shows whether learners are comfortable with a certain instructional strategy or not. Although previous studies have investigated the use of audio media, the satisfaction of students with an instructional strategy that combines radio teaching and podcasts as an independent teaching strategy has not been fully investigated. In this study, all lectures were delivered through the radio and students had no direct contact with their instructors. No modules or any other material in form of text were given to the students. They instead, revised the taught content by listening to podcasts saved on their mobile electronic gadgets. Prior to data collection, DEUS received orientation through workshops on how to use audio media in distance education. To achieve objectives of the study, a survey, naturalistic observations and face-to-face interviews were used to collect data from a sample of 211 undergraduate and graduate students. Findings indicate that there was no statistically significant difference in the levels of satisfaction between male and female students. The results from post hoc analysis show that there is a statistically significant difference in the levels of satisfaction regarding the use of audio media between diploma and graduate students. Diploma students are more satisfied compared to their graduate counterparts. T-test results reveal that there was no statistically significant difference in the general satisfaction with audio media between rural and urban-based students. And ANOVA results indicate that there is no statistically significant difference in the levels of satisfaction with the use of audio media across age groups. Furthermore, results from observations and interviews reveal that DEUS found learning using audio media a pleasurable medium of instruction. This is an indication that audio media can be considered as an instructional strategy on its own merit.
Keywords: Audio media, distance education, distance education university students, medium of instruction, satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7977835 Study on the Effect of Pre-Operative Patient Education on Post-Operative Outcomes
Authors: Chaudhary Itisha, Shankar Manu
Abstract:
Patient satisfaction represents a crucial aspect in the evaluation of health care services. Preoperative teaching provides the patient with pertinent information concerning the surgical process and the intended surgical procedure as well as anticipated patient behavior (anxiety, fear), expected sensation, and the probable outcomes. Although patient education is part of Accreditation protocols, it is not uniform at most places. The aim of this study was to try to assess the benefit of preoperative patient education on selected post-operative outcome parameters; mainly, post-operative pain scores, requirement of additional analgesia, return to activity of daily living and overall patient satisfaction, and try to standardize few education protocols. Dependent variables were measured before and after the treatment on a study population of 302 volunteers. Educational intervention was provided by the Investigator in the preoperative period to the study group through personal counseling. An information booklet contained detailed information was also provided. Statistical Analysis was done using Chi square test, Mann Whitney u test and Fischer Exact Test on a total of 302 subjects. P value <0.05 was considered as level of statistical significance and p<0.01 was considered as highly significant. This study suggested that patients who are given a structured, individualized and elaborate preoperative education and counseling have a better ability to cope up with postoperative pain in the immediate post-operative period. However, there was not much difference when the patients have had almost complete recovery. There was no difference in the requirement of additional analgesia among the two groups. There is a positive effect of preoperative counseling on expected return to the activities of daily living and normal work schedule. However, no effect was observed on the activities in the immediate post-operative period. There is no difference in the overall satisfaction score among the two groups of patients. Thus this study concludes that there is a positive benefit as suggested by the results for pre-operative patient education. Although the difference in various parameters studied might not be significant over a long term basis, they definitely point towards the benefits of preoperative patient education.Keywords: Patient education, post-operative pain, patient satisfaction, post-operative outcome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33397834 Beam and Diffuse Solar Energy in Zarqa City
Authors: Ali M. Jawarneh
Abstract:
Beam and diffuse radiation data are extracted analytically from previous measured data on a horizontal surface in Zarqa city. Moreover, radiation data on a tilted surfaces with different slopes have been derived and analyzed. These data are consisting of of beam contribution, diffuse contribution, and ground reflected contribution radiation. Hourly radiation data for horizontal surface possess the highest radiation values on June, and then the values decay as the slope increases and the sharp decreasing happened for vertical surface. The beam radiation on a horizontal surface owns the highest values comparing to diffuse radiation for all days of June. The total daily radiation on the tilted surface decreases with slopes. The beam radiation data also decays with slopes especially for vertical surface. Diffuse radiation slightly decreases with slopes with sharp decreases for vertical surface. The groundreflected radiation grows with slopes especially for vertical surface. It-s clear that in June the highest harvesting of solar energy occurred for horizontal surface, then the harvesting decreases as the slope increases.
Keywords: Beam and Diffuse Radiation, Zarqa City
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15497833 A Study on Leaching Behavior of Na, Ca and K Using Column Leach Test
Authors: Barman P.J, Kartha S A, Gupta S, Pradhan B.
Abstract:
Column leach test has been performed to examine the behavior of leaching of sodium, calcium and potassium in landfills. In the column leach apparatus, two different layers of contaminated and uncontaminated soils of different height ratios (ratio of depth of contaminated soil to the depth of uncontaminated soil) are taken. Water is poured from an overhead tank at a particular flowrate to the inlet of the soil column for a certain ponding depth over the contaminated soil. Subsequent infiltration causes leaching and the leachates are collected from the bottom of the column. The concentrations of Na, Ca and K in the leachate are measured using flame photometry. The experiments are further extended by changing the rates of flow from the overhead tank to the inlet of the column in achieving the same ponding depth. The experiments are performed for different scenarios in which the height ratios are altered and the variations of concentrations of Na, Ca, and K are observed. The study brings an estimation of leaching in landfill sites for different heights and precipitation intensity where a ponding depth is maintained over the landfill. It has been observed that the leaching behavior of Na, Ca, and K are not similar. Calcium exhibits highest amount of leaching compared to Sodium and Potassium under similar experimental conditions.Keywords: Column leaching, flow rate, uncontaminated soil, contaminated soil, concentration, height ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333