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Abstract—We consider linear regression models where both input
data (the values of independent variables) and output data (the
observations of the dependent variable) are interval-censored. We
introduce a possibilistic generalization of the least squares estimator,
so called OLS-set for the interval model. This set captures the
impact of the loss of information on the OLS estimator caused by
interval censoring and provides a tool for quantification of this effect.
We study complexity-theoretic properties of the OLS-set. We also
deal with restricted versions of the general interval linear regression
model, in particular the crisp input – interval output model. We give
an argument that natural descriptions of the OLS-set in the crisp input
– interval output cannot be computed in polynomial time. Then we
derive easily computable approximations for the OLS-set which can
be used instead of the exact description. We illustrate the approach
by an example.

Keywords—linear regression; interval-censored data; computa-
tional complexity

I. INTRODUCTION

Consider the linear regression model

y = Xβ + ε (1)

where y denotes the vector of observations of the dependent
variable, X denotes the design matrix of the regression model,
β denotes the vector of unknown regression parameters and
ε is the vector of disturbances. We do not make any special
assumptions on ε; we just assume that for estimation of β, a
linear estimator can be used, i.e. an estimator of the form

β̂ = Qy, (2)

where Q is a matrix. In the following text, we shall concentrate
on the Ordinary Least Squares (OLS) estimator, which corre-
sponds to the choice Q = (XTX)−1XT in (2). Nevertheless,
the theory is also applicable for other linear estimators, such
as the Generalized Least Squares (GLS) estimator, which
corresponds to the choice Q = (XTΩ−1X)−1Ω−1XT in (2),
where Ω is either known or estimated covariance matrix of
ε. Other examples include estimation methods which, at the
beginning, exclude outliers and then apply OLS or GLS. These
estimators are often used in robust statistics.

The symbol n stands for the number of observations and
the symbol p stands for the number of regression parameters.

The tuple (X, y) is called input data for the model (1).
In this text we study computational properties of estimators

for the model (1) when the input data cannot be observed
directly; instead, only intervals are known such that that values
of X and y are guaranteed to be contained in.
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A variety of methods for estimation of regression parameters
in a regression with interval data has been developed; they are
studied in statistics ([6], [14], [26], [29], [32], [34], [38], [46]),
where also robust regression methods have been proposed
([22], [35]), in fuzzy theory ([15], [19], [20], [43], [44], [45])
as well as in computer science ([9], [21], [24]). An algebraic
treatment of least squares methods for interval data has been
considered in [4] and [12].

II. INTERVAL DATA IN LINEAR REGRESSION MODELS

A. Motivation
Inclusion of interval data in linear regression models is

suitable for modeling of a variety of real-world problems. For
example:

• The data (X, y) have been interval-censored. This is often
the case of medical, epidemiologic or demographic data
— only interval-censored data are published while the
exact individual values are kept secret.

• Data are rounded. If we store data using data types of
restricted precision, then instead of exact values we are
only guaranteed that the true value is in an interval of
width 2−d where d is the number of bits of the data type
for representation of the non-integer part. For example, if
we store data as integers, then we know only the interval
[ỹ − 0.5, ỹ + 0.5] instead of the exact value y, where ỹ
is y rounded to the nearest integer. This application is
important in the theory of reliable computing.

• Sometimes, data are intervals by their nature. For in-
stance, financial data have bid-ask spreads.

• Categorial data may be sometimes interpreted as interval
data; for example, credit rating grades can be understood
as intervals of credit spreads over the risk-free yield
curve.

In econometric regression models, it is often the case that
varying variables are represented by their average or median
values. For example, if the exchange rate for a period of one
year should be included in the regression model, usually the
average rate of that year is taken. However, it might be more
appropriate to regard the exchange rate as an interval inside
which the variable changes.

More applications of interval data are found in econometrics
[5], information science [8], ergonomics [7], optimization and
operational research [10], [27], [30], [42], speeach learning
[33] and in pattern recognition [28], [31].

B. Interval numbers, vectors and matrices
If two real matrices X1, X2 are of the same dimension, the

relation X1 ≤ X2 is understood componentwise.
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Definition 1. (a) If −∞ < a ≤ a <∞, the interval number
a is the closed interval [a, a].

(b) Let X ≤ X be two M × N real matrices. The interval
matrix X = [X,X] is the set

{X ∈ R
M×N : X ≤ X ≤ X}.

The interval vector y = [y, y] is a special case of the interval
matrix with one column.

Interval numbers, vectors and matrices are typeset in bold-
face.

Arithmetic operations + and × with interval numbers a =
[a, a] and b = [b, b] are defined in a natural way (see [1]):

a+ b = [a+ b, a+ b],

a · b = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]. (3)

From the definition, the following lemma is clear:

Lemma 2. A finite sequence of sums and products of interval
numbers is a bounded set.

C. The possibilistic approach to linear regression models with
interval data

Assume that only intervals (X,y) are available instead of
the exact values of the data (X, y) such that X ∈ X and
y ∈ y. Then, of course, we lose some information. The
main aim of this text is to quantify the impact of the loss
of information caused by interval censoring (or rounding) on
the OLS estimator β̂. The next definition generalizes of the
notion of the estimator β̂ for the case when the crisp values
(X, y) in are replaced by intervals (X,y) in (1).

Definition 3. (a) A tuple (X,y), where X is an n × p
interval matrix and y is an n×1 interval vector, is called
an input (or: data) for an interval regression model, or
just interval regression model for short.

(b) The OLS-set of (X,y) is defined as

OLS(X,y) = {β ∈ R
p :

(∃X ∈X)(∃y ∈ y)XTXβ = XTy}.
The motivation for the definition is straightforward. Our aim

is to use OLS to obtain an estimate of the unknown vector of
regression parameters β in the model (1). However, observa-
tions of both dependent variables (y) and independent variables
(X) are interval-censored; i.e., we only know intervals X and
y that are guaranteed to contain the directly unobservable data
(X, y). Then, the set OLS(X,y) contains all possible values
of OLS-estimates of β as X and y range over X and y,
respectively. We say that OLS(X,y) is a possibilistic version
of the notion of the OLS estimator.

The set OLS(X,y) captures the loss of information caused
by interval censoring (or rounding) of the data included in the
regression model. For a user of such a regression model, it
is essential to understand whether the set is, in some sense,
“large” or ”small“; that is, whether the impact of the loss on
the OLS esimator may be serious or not. More generally, the
user needs a suitable description of the set OLS(X,y). When
p = 2 or p = 3, then the set can be visualized in the parameter

space using standard numerical methods. However, in higher
dimensions visualization is quite complicated. Hence we need
methods for a suitable description of the set OLS(X,y); in
particular, we would like to design computationally feasible
methods. In Section 2 we shall show that this task is very
hard from the computational point of view.

D. Two interpretations of the possibilistic approach

Possibilistic interpretation. If we do not assume any distri-
bution on X or y, then the set OLS(X,y) contains all possible
values of β̂ = (XTX)−1XTy as X ranges over X and y
ranges over y. Then, the boundary of the set OLS(X,y) can
be understood as the worst-case impact of interval censoring
(or rounding) on the estimator. The possibilistic approach then
can be characterized as a tool for analysis of the worst possible
case. The worst-case analysis will be illustrated by an example
in Section V-C.

Probabilistic interpretation. If X and y are random variables
such that the supports of the distributions of X and y are X
and y, respectively, then the support of the distribution of
(XTX)−1XTy is OLS(X,y). Then the set B(X,y) can be
called as 100% confidence region for the OLS estimator. An
interesting special case is a regression model with independent
random errors with distributions the supports of which are
bounded.

E. Variants of interval regression models

An interval regression model (X = [X,X],y = [y, y]) is
also called a general model or interval input – interval output
model. Interesting special cases are (see [23]):
(i) crisp input – interval output model is a model with X =

X;
(ii) interval input – crisp output model is a model with y = y;

(iii) crisp input – crisp output model is a model with X = X
and y = y.

“Crisp input – crisp output” is just another name for the
traditional model (1).

If X is crisp, i.e. if X = X =: X , then instead of
OLS(X,y) we write OLS(X,y). (And similarly in the case
of y crisp.)

III. THE GENERAL MODEL

Our aim is to find a description of the set OLS(X,y)
given X = [X,X] and y = [y, y]. Such a description
may take several forms — for example, we might try to
find a small enclosing ellipse or a small enclosing box (i.e.
interval vector). Theorem 5, which will be the main result
of this Section, shows that in general we cannot expect to
be successful in a computationally feasible way. The point is
that any reasonable description of OLS(X,y) must allow the
user to decide whether the set is bounded or not. Theorem 5
says that there is no polynomial-time method for this question
unless P = NP.

Before we state and prove the Theorem, we briefly review
some definitions from complexity theory.
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A. Some complexity-theoretic notions

We sketch basic definitions needed for further reading only;
more details can be found in [2], [39].

The class P is the class of sets decidable in Turing deter-
ministic polynomial time. The class NP is the class of sets
decidable in Turing nondeterministic polynomial time. The
class co-NP is the class of complements of NP-sets, i.e.

co-NP = {A : co-A ∈ NP},
where co-A is the complement of A. The class PF is the class
of functions computable in Turing deterministic polynomial
time.

A set A is also called problem A.
A problem A is reducible to problem B if there is a function

f ∈ PF such that

(∀x)[x ∈ A ←→ f(x) ∈ B].

The function f is also called reduction of the problem A to
the problem B.

A problem C is NP-complete if C ∈ NP and any problem
A ∈ NP is reducible to C. A problem C is co-NP-complete
if C ∈ co-NP and any problem A ∈ co-NP is reducible to C.

Recall that the most important complexity-theoretic conjec-
ture is that P 	= NP which is generally believed to be true.
We shall need the following elementary lemma which can be
found in any textbook on complexity theory (see [2], [39]).

Lemma 4. (a) The problem A is NP-complete if and only if
the problem co-A is co-NP-complete;

(b) if A is NP-complete, C ∈ NP and A is reducible to C,
then C is NP-complete;

(c) if P 	= NP, then for any co-NP complete set C it holds
C 	∈ P.

The problems in P are generally considered to be compu-
tationally feasible. The proposition (c) says that, if P 	= NP,
then no co-NP-complete problem is computationally feasible.
Indeed, for all co-NP-complete problems we know only expo-
nential time algorithms. The best known example of a co-NP
complete problem is the problem to determine whether a given
boolean formula ϕ(x1, . . . , xN ) is a tautology. Observe that
the simplest method for this problem—construction of the
truth table of ϕ—requires time exponential in N . No feasible
algorithm for the problem is known and if P 	= NP then none
exist.

B. The main result of Section III

Let (X)ij and (y)i denote the (i, j)-th component of the
matrix X and i-th component of the vector y, respectively.

Theorem 5. Let X,X, y, y be rational and denote X =

[X,X] and y = [y, y]. Deciding whether the set OLS(X,y)
is bounded is a co-NP complete problem.

Proof. Let X be an n× p interval matrix. If there is X ∈X
with column rank < p, then for any y the set

{β : XTXβ = XTy}

is an affine space of dimension at least one, and hence is
unbounded.

Assume that for every X ∈X , the column rank of X is p.
Then (XTX)−1 exists for each X ∈ X . By Cramer’s Rule,
we can write

((XTX)−1)ij = ±det(XTX)[i,j]

detXTX

where A[i,j] results from A by deleting the j-th row and the
i-th column. By continuity of det(·) on the compact set X ,
the set

{detXTX : X ∈X}
is a closed interval which, by assumption, does not contain
zero. It follows that the set{

1

detXTX
: X ∈X

}

is a closed interval. Let us denote the interval [d, d]. Also the
set

{± det(XTX)[i,j] : X ∈X}
is an interval of the form [δij , δij ]. Hence we can write

(β̂)i = {((XTX)−1XTy)i : X ∈X, y ∈ y}

=

⎧⎨
⎩

p∑
j=1

((XTX)−1)ij ·
n∑

k=1

(X)kj · yk : X ∈X, y ∈ y

⎫⎬
⎭

⊆
p∑

j=1

[d, d] · [δij , δij ] ·
n∑

k=1

[(X)kj , (X)kj ] · [(y)k, (y)k]

and the last expression is a finite sequence of sums and
products of intervals. By Lemma 2 it follows that it is a
bounded set.

We have shown that the set B(X,y) is unbounded if and
only if there is an X ∈ X such that the column rank of
X is < p. By [40], the latter problem is NP complete. We
have constructed a reduction from an NP-complete problem
to the problem C := “is OLS(X,y) unbounded?”. By the
statements (a) and (b) of Lemma 4, the problem co-C = “is
OLS(X,y) bounded?” is co-NP-complete.

It follows that if we want to find a computationally feasible
description of OLS(X,y) we must reformulate the problem.
We can follow (at least) two ways:
(a) either to search for descriptions and/or approximations

of OLS(X,y) model which are guaranteed to be correct
only under additional assumptions,

(b) or to consider special cases of the general model sepa-
rately.

There is a variety of approaches to (a), see [1], [25], [16],
[17], [18], [36], [40] and a comparison study [37].

In the next section we follow the way (b) and study the
restriction to the crisp input – interval output model. Observe
that this restriction is the only interesting restriction among
(i) – (iii) (see Section II-E). In the crisp input – crisp output
model, the set OLS(X, y) is trivial — it is either a single point
or an affine space in the parameter space. And the restriction
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to the interval input – crisp output model is ruled out by the
following observation.

Corollary 6 (to the proof of Theorem 5). Let X,X and y be
rational and denote X = [X,X]. Deciding whether the set
OLS(X, y) is bounded is a co-NP complete problem.

Proof. The reduction constructed in the proof of Theorem 5
remains valid also if y is crisp.

IV. THE CRISP INPUT – INTERVAL OUTPUT MODEL

The aim of this section is twofold:
• we shall show a geometric characterization of the set

OLS(X,y);
• we shall show that though there are natural descriptions

of the set OLS(X,y), they cannot be computed in poly-
nomial time.

Hence, from the computational point of view, the situation
is (in some sense) as disappointing as in the general case.
However, the reason in quite different.

A. Geometric characterization of the set OLS(X,y)

First we need to review some notions from geometry of
convex polyhedra; for further reading see [47].

Definition 7. The Minkowski sum of a set A ⊆ R
k and a

vector g ∈ R
k is the set

A� g = {a+ λg : a ∈ A, λ ∈ [0, 1]}.
It is easily seen that for a convex set A, it holds

A� g = conv(A ∪ {a+ g : a ∈ A}),
where conv denotes the convex hull.

Definition 8. The zonotope generated by g1, . . . , gN ∈ R
k

with shift s ∈ R
k is the set

Z(s; g1, . . . , gN ) = (· · · (({s}� g1)� g2)� · · ·� gN ).

The vectors g1, . . . , gN are called generators.

Instead of (· · · (({s}� g1)� g2)� · · ·� gN ) we shall write
{s}� g1 � g2 � · · ·� gN only.

It is easily seen that a zonotope is a convex polyhedron; see
Figure 1.

s s

g1

s

g1

s

g1

g2g3g2

s

g1

g2
g3g4

Fig. 1. The evolution of a zonotope Z(s; g1, g2, g3, g4).

The main result of this section follows.

Theorem 9. Let X ∈ R
n×p be a matrix of full column rank

and y = [y, y] an n× 1 interval vector. Let y
i

and yi denote
the i-th entry of y and y, respectively. Then

OLS(X,y) = Z(Qy; Q1(y1 − y
1
), . . . , Qn(yn − y

n
)),

where Q = (XTX)−1XT and Qi is the i-th column of Q.

Proof.

OLS(X,y)

= {Qy : y ∈ y}
= {Qy +QΛ : Λ ∈ [0, y − y]}
= {Qy +QΛ : Λ1 ∈ [0, y1 − y

1
], Λ2 ∈ [0, y2 − y

2
], . . . ,

Λn ∈ [0, yn − y
n
]}

=
{
Qy +Q

⎛
⎜⎜⎜⎝
Λ1

0
...
0

⎞
⎟⎟⎟⎠+Q

⎛
⎜⎜⎜⎝

0
Λ2

...
0

⎞
⎟⎟⎟⎠+ · · ·+Q

⎛
⎜⎜⎜⎝

0
0
...
Λn

⎞
⎟⎟⎟⎠ :

Λ1 ∈ [0, y1 − y
1
], Λ2 ∈ [0, y2 − y

2
], . . . ,

Λn ∈ [0, yn − y
n
]
}

= {Qy +Q1Λ1 +Q2Λ2 + · · ·+QnΛn :

Λ1 ∈ [0, y1 − y
1
], Λ2 ∈ [0, y2 − y

2
], . . . ,

Λn ∈ [0, yn − y
n
]}

= {Qy +Q1(y1 − y
1
)λ1 +Q2(y2 − y

2
)λ2 + · · ·

+Qn(yn − y
n
)λn :

λ1 ∈ [0, 1], λ2 ∈ [0, 1], . . . , λn ∈ [0, 1]}
= {Qy}�Q1(y1 − y

1
)�Q2(y2 − y

2
)� · · ·

�Qn(yn − y
n
).

There is a nice geometric characterization of zonotopes.
Namely, a set Z ⊆ R

k is a zonotope if and only if there
exists a number m, a matrix Q ∈ R

k×m and an interval
m-dimensional vector y (called m-dimensional cube) such
that Z = {Qy : y ∈ y}. The interesting case is m > k.
In that case we can say that zonotopes are images of “high-
dimensional” cubes in “low-dimensional” spaces under linear
mappings, see Figure 2. In our setting, the set OLS(X,y) is
an image of y under the mapping determined by the matrix
Q = (XTX)−1XT.

B. Descriptions of the set OLS(X,y)

In order the user can understand how the set OLS(X,y)
looks like, she/he can use any standard description applicable
for convex polyhedra. In particular, three descriptions come to
mind:
(a) description of the zonotope OLS(X,y) by the shift vector

and the set of generators;
(b) description of the zonotope OLS(X,y) by the enumera-

tion of vertices;
(c) description of the zonotope OLS(X,y) by the enumera-

tion of facets, i.e. in terms of a p-column matrix A and
a vector c such that OLS(X,y) = {β ∈ R

p : Aβ ≤ c}.
The description (a) has been given by the Theorem 9.
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11.522.533.5
0

0.5

1
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2

2.5

3

3.5

4

Fig. 2. A zonotope as an image of a higher-dimensional cube.

C. A negative complexity result for the descriptions (b) and (c)

It is an interesting question whether there are efficient
algorithms which can construct the enumerations (b) and (c)
given X , y and y. We give an argument that the answer
is negative. The answer follows from the simple fact that
zonotopes can have too many vertices and facets.

Theorem 10 ([47]). For a zonotope Z ⊆ R
p with n generators

it holds V (Z) ≤ 2
∑p−1

k=0

(
n−1
k

)
and F (Z) ≤ 2

(
n

p−1

)
, where

V (Z) is the number of vertices and F (Z) is the number of
facets of Z. In general the bounds cannot be improved.

The numbers V (Z) and F (Z) cannot be bounded by a
polynomial in n and p; hence, the functions enumerating
vertices and facets are not in PF for the simple reason that
their output cannot be bounded by a polynomial in the size of
the input.

D. A positive complexity result for the descriptions (b) and (c)

However, Theorem 10 has an interesting corollary if we treat
the number p as a fixed constant (i.e. if we restrict ourselves to
a class of regression models with a fixed number of regression
parameters).

Corollary 11. If p is fixed then V (Z) ≤ O(np−1) and
F (Z) ≤ O(np−1).

Proof. We have

F (Z) ≤ 2

(
n

p− 1

)

=
2n(n− 1) · · · (n− p+ 2)

(p− 1)!

≤ 2np−1

≤ O(np−1)

(4)

and

V (Z) ≤ 2

p−1∑
k=0

(
n− 1

k

)

≤ 2p · max
k∈{0,...,p−1}

(
n− 1

k

)

(�)

≤ O(nkmax)

= O(np−1),

where kmax is the k ∈ {0, . . . , p−1} for which the maximum
is attained. By well-known properties of binomial coefficients,
for n large enough it holds kmax = p − 1. In the inequality
(�) we used a similar estimate as in (4).

In the literature on computational geometry, several algo-
rithms for enumeration of vertices and facets of a zonotope
given by the set of generators are known. Moreover, there
are methods with computation time which is bounded by
a polynomial in the size of input and size of output. In
Corollary 11 we have shown that if p is fixed then the size of
the output is polynomially bounded in the size of the input.
Hence, if p is fixed then these methods work in polynomial
time.

We shall not describe the methods here; we recommend the
papers [3] and [11].

V. APPROXIMATIONS OF THE SET OLS(X,y)

A. Interval approximation

By basic properties of interval arithmetic (3), it is easily
seen that for every i and every b ∈ OLS(X,y) it holds

=:(b)i︷ ︸︸ ︷
n∑

j=1

min{(Q)ij(y)j , (Q)ij(y)j} ≤ (b)i

≤
n∑

j=1

max{(Q)ij(y)j , (Q)ij(y)j}
︸ ︷︷ ︸

=:(b)i

(5)

where Q = (XTX)−1XT. Moreover, the cube

B = [b, b] (6)

is the smallest cube overscribing the set OLS(X,y).
The bound B can be easily computed in polynomial time.

Moreover, it allows us to quantify the effect of interval
censoring on each regression parameter separately. Often it
is the case that we are interested in estimation of a single
regression parameter or a subset of regression parameters;
then, if the interval [(b)i, (b)i] is narrow, this fact can be
interpreted as the interval-censoring effect is insignificant for
estimation of the i-th parameter.
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B. Ellipsoidal approximation

The smallest ellipse E containing OLS(X,y) is called
the Löwner-John ellipse. Combinatorially complex polyhedra
are often approximated with ellipses: an ellipse is a convex
set which is quite flexible to approximate the shape of the
polyhedron and it is sufficiently simple to be described. An
ellipse E is described by a center point s and a positive definite
matrix E such that

E = {x ∈ R
p : (x− s)TE−1(x− s) ≤ 1}.

We do not know a polynomial-time algorithm for construction
of the Löwner-John ellipse for the set OLS(X,y). It is an
intriguing research problem; however, we expect a hardness
result on this computational problem rather than a polynomial-
time algorithm. (More on algorithms for finding ellipses over-
scribing polyhedra is found in [13].)

The following ellipse E = (E, s) can be seen as a weaker
form:

s = 1
2Q(y + y),

E = Q · diag
(
n
4 ((y)1 − (y)1)

2, . . . , n
4 ((y)n − (y)n)

2
) ·QT,

(7)

where Q = (XTX)−1XT and diag(ξ1, . . . , ξn) denotes the
diagonal matrix with diagonal entries ξ1, . . . , ξn. This is the
ellipse which is the image of the smallest ellipse overscribing
y in R

n under the mapping υ �→ Qυ. This proves Z ⊆ E .

C. Example

Consider the regression model

yi = β1 + β2xi + εi (8)

with n = 11 observations collected in the following table.
Only interval-censored values are available to us:

(y)i = [(y)i, (y)i] = [(ỹ)i − 1
2 , (ỹ)i +

1
2 ], i = 1, . . . , 11

where ỹ denotes the center of y.

i 1 2 3 4 5 6
xi −2 −1 0 1 2 3
y
i

1.5 −1.5 −0.5 3.5 3.5 5.5

ỹi 2 −1 0 4 4 6
yi 2.5 −0.5 0.5 4.5 4.5 6.5

i 7 8 9 10 11
xi 4 5 6 7 8
y
i

8.5 6.5 10.5 10.5 9.5

ỹi 9 7 11 11 10
yi 9.5 7.5 11.5 11.5 10.5

Using the central estimator β̃ = (XTX)−1XTỹ we get

β̃1 = 2.12, β̃2 = 1.2

and with (5) we get

[(b)1, (b)1] = [1.56, 2.69], [(b)2, (b)2] = [1.06, 1.34].

We can conclude that the interval-censoring effect couldn’t
have caused an error higher than ±0.565 [= 1

2 (2.69− 1.56)]

in the estimate of β1 and an error higher than ±0.14 in the
estimate of β2.

The set (zonotope) OLS(X,y), together with the enclosure
B given by (6) and the ellipse (7), is plotted in Figure 3.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

1.1

1.2

1.3

1.4

β̃

OLS(X,y)

B

E

Fig. 3. The set (zonotope) OLS(X,y) for the regression model in the
Example and its approximations B and E given by (6) and (7), respectively.

Though the approximations 1 and 2 are quite trivial, their
combination gives some nontrivial information. The enclosure
B contains the point [1.56, 1.06]; hence, the approximation
B does not rule out the case that both regression param-
eters could have been affected by the maximal possible er-
ror [−0.565,−0.14] in the negative direction simultaneously.
However, this case is ruled out by the fact that [1.65, 1.06] 	∈ E .

D. Testing admissibility

As motivated by the previous Example, it is natural to ask
whether it could have happened that all regression parameters
had been affected by a simultaneous error Δ; i.e. whether the
point β̃+Δ is in OLS(X,y) or not. A vector b (in particular,
a vector b of the form b = β̃ + Δ) is called admissible if
b ∈ OLS(X,y).

Proposition 12. Admissibility can be tested in polynomial
time.

Proof. The vector b is admissible if and only if there is a
y ∈ R

n such that

Qy = b and y ≤ y ≤ y

where Q = (XTX)−1XT. Hence, deciding admissibil-
ity amounts to deciding feasibility of a system of linear
(in)equalities, which is essentially a linear programming prob-
lem. Linear programming is solvable in polynomial time, see
[41].

E. Monte Carlo estimation of volume of the set OLS(X,y)

Proposition 12, combined with (5), suggests a simple pro-
cedure for Monte-Carlo approximation of the volume of the
set OLS(X,y), which is a natural measure of its size. The
procedure just generates a random point b ∈ [b, b] and tests
its admissibility. This procedure is interesting in particular in
higher dimensions, where the zonotope OLS(X,y) cannot be
easily visualized.

Using the Monte Carlo approximation of volume is a
reasonable choice: no polynomial-time algorithm (in n, p) for
exact computation of volume of the set OLS(X,y) is known.
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