Search results for: objectionable Web content classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2728

Search results for: objectionable Web content classification

1168 Effect of Soil Tillage System upon the Soil Properties, Weed Control, Quality and Quantity Yield in Some Arable Crops

Authors: T Rusu, P I Moraru, I Bogdan, A I Pop, M L Sopterean

Abstract:

The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control and yield in the case of maize (Zea mays L.), soya-bean (Glycine hispida L.) and winter wheat (Triticum aestivum L.) in a three years crop rotation. A research has been conducted at the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania. The use of minimum soil tillage systems within a three years rotation: maize, soya-bean, wheat favorites the rise of the aggregates hydro stability with 5.6-7.5% on a 0-20 cm depth and 5-11% on 20-30 cm depth. The minimum soil tillage systems – paraplow, chisel or rotary grape – are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The soil tillage system influences the productivity elements of cultivated species and finally the productions thus obtained. Thus, related to conventional working system, the productions registered in minimum tillage working represented 89- 97% in maize, 103-112% in soya-bean, 93-99% in winter-wheat. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control. Under minimum tillage systems in the case of winter weat as an option for replacing classic ploughing, the best results in terms of quality indices were obtained from version worked with paraplow, followed by rotary harrow and chisel. At variants worked with paraplow were obtained quality indices close to those of the variant worked with plow, and protein and gluten content was even higher. At Ariesan variety, highest protein content, 12.50% and gluten, 28.6% was obtained for the variant paraplow.

Keywords: Minimum tillage, soil properties, yields quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
1167 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland

Authors: Sotirios Raptis

Abstract:

Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found  that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.

Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475
1166 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach

Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik

Abstract:

We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.

Keywords: Noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
1165 Identification and Classification of Gliadin Genes in Iranian Diploid Wheat

Authors: Jafar Ahmadi, Alireza Pour-Aboughadareh

Abstract:

Wheat is the first and the most important grain of the world and its bakery property is due to glutenin and gliadin qualities. Wheat seed proteins were divided into four groups according to solubility including albumin, globulin, glutenin and prolamin or gliadin. Gliadins are major components of the storage proteins in wheat endosperm. It seems that little information is available about gliadin genes in Iranian wild relatives of wheat. Thus, the aim of this study was the evaluation of the wheat wild relatives collected from different origins of Zagros Mountains in Iran, in terms of coding gliadin genes using specific primers. For this, forty accessions of Triticum boeoticum and Triticum urartu were selected for this study. For each accession, genomic DNA was extracted and PCRs were performed in total volumes of 15 μl. The amplification products were separated on 1.5% agarose gels. In results, for Gli-2A locus three allelic variants were detected by Gli-2As primer pairs. The sizes of PCR products for these alleles were 210, 490 and 700 bp. Only five (13%) and two accessions (5%) produced 700 and 490 bp fragments when their DNA was amplified with the Gli.As.2 primer pairs. However, 93% of the accessions carried allele 210 bp, and only 8% did not any product for this marker. Therefore, these germplasm could be used as rich gene pool to broaden the genetic base of bread wheat.

Keywords: Diploied wheat, gliadin, Triticum boeoticum, Triticum urartu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
1164 Treatment of Inorganic Filler Surface by Silane-Coupling Agent: Investigation of Treatment Condition and Analysis of Bonding State of Reacted Agent

Authors: Hiroshi Hirano, Joji Kadota, Toshiyuki Yamashita, Yasuyuki Agari

Abstract:

It is well known that enhancing interfacial adhesion between inorganic filler and matrix resin in a composite lead to favorable properties such as excellent mechanical properties, high thermal resistance, prominent electric insulation, low expansion coefficient, and so on. But it should be avoided that much excess of coupling agent is reacted due to a negative impact of their final composite-s properties. There is no report to achieve classification of the bonding state excepting investigation of coating layer thickness. Therefore, the analysis of the bonding state of the coupling agent reacted with the filler surface such as BN particles with less functional group and silica particles having much functional group was performed by thermal gravimetric analysis and pyrolysis GC/MS. The reacted number of functional groups on the silane-coupling agent was classified as a result of the analysis. Thus, we succeeded in classifying the reacted number of the functional groups as a result of this study.

Keywords: Inorganic filler, boron nitride, surface treatment, coupling agent, analysis of bonding state

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5053
1163 Mechanical, Thermal and Biodegradable Properties of Bioplast-Spruce Green Wood Polymer Composites

Authors: A. Atli, K. Candelier, J. Alteyrac

Abstract:

Environmental and sustainability concerns push the industries to manufacture alternative materials having less environmental impact. The Wood Plastic Composites (WPCs) produced by blending the biopolymers and natural fillers permit not only to tailor the desired properties of materials but also are the solution to meet the environmental and sustainability requirements. This work presents the elaboration and characterization of the fully green WPCs prepared by blending a biopolymer, BIOPLAST® GS 2189 and spruce sawdust used as filler with different amounts. Since both components are bio-based, the resulting material is entirely environmentally friendly. The mechanical, thermal, structural properties of these WPCs were characterized by different analytical methods like tensile, flexural and impact tests, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). Their water absorption properties and resistance to the termite and fungal attacks were determined in relation with different wood filler content. The tensile and flexural moduli of WPCs increased with increasing amount of wood fillers into the biopolymer, but WPCs became more brittle compared to the neat polymer. Incorporation of spruce sawdust modified the thermal properties of polymer: The degradation, cold crystallization, and melting temperatures shifted to higher temperatures when spruce sawdust was added into polymer. The termite, fungal and water absorption resistance of WPCs decreased with increasing wood amount in WPCs, but remained in durability class 1 (durable) concerning fungal resistance and quoted 1 (attempted attack) in visual rating regarding to the termites resistance except that the WPC with the highest wood content (30 wt%) rated 2 (slight attack) indicating a long term durability. All the results showed the possibility to elaborate the easy injectable composite materials with adjustable properties by incorporation of BIOPLAST® GS 2189 and spruce sawdust. Therefore, lightweight WPCs allow both to recycle wood industry byproducts and to produce a full ecologic material.

Keywords: Biodegradability, durability, mechanical properties, melt flow index, spectrophotometry, structural properties, thermal properties, wood-plastic composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
1162 Production of Pig Iron by Smelting of Blended Pre-Reduced Titaniferous Magnetite Ore and Hematite Ore Using Lean Grade Coal

Authors: Bitan Kumar Sarkar, Akashdeep Agarwal, Rajib Dey, Gopes Chandra Das

Abstract:

The rapid depletion of high-grade iron ore (Fe2O3) has gained attention on the use of other sources of iron ore. Titaniferous magnetite ore (TMO) is a special type of magnetite ore having high titania content (23.23% TiO2 present in this case). Due to high TiO2 content and high density, TMO cannot be treated by the conventional smelting reduction. In this present work, the TMO has been collected from high-grade metamorphic terrain of the Precambrian Chotanagpur gneissic complex situated in the eastern part of India (Shaltora area, Bankura district, West Bengal) and the hematite ore has been collected from Visakhapatnam Steel Plant (VSP), Visakhapatnam. At VSP, iron ore is received from Bailadila mines, Chattisgarh of M/s. National Mineral Development Corporation. The preliminary characterization of TMO and hematite ore (HMO) has been investigated by WDXRF, XRD and FESEM analyses. Similarly, good quality of coal (mainly coking coal) is also getting depleted fast. The basic purpose of this work is to find how lean grade coal can be utilised along with TMO for smelting to produce pig iron. Lean grade coal has been characterised by using TG/DTA, proximate and ultimate analyses. The boiler grade coal has been found to contain 28.08% of fixed carbon and 28.31% of volatile matter. TMO fines (below 75 μm) and HMO fines (below 75 μm) have been separately agglomerated with lean grade coal fines (below 75 μm) in the form of briquettes using binders like bentonite and molasses. These green briquettes are dried first in oven at 423 K for 30 min and then reduced isothermally in tube furnace over the temperature range of 1323 K, 1373 K and 1423 K for 30 min & 60 min. After reduction, the reduced briquettes are characterized by XRD and FESEM analyses. The best reduced TMO and HMO samples are taken and blended in three different weight percentage ratios of 1:4, 1:8 and 1:12 of TMO:HMO. The chemical analysis of three blended samples is carried out and degree of metallisation of iron is found to contain 89.38%, 92.12% and 93.12%, respectively. These three blended samples are briquetted using binder like bentonite and lime. Thereafter these blended briquettes are separately smelted in raising hearth furnace at 1773 K for 30 min. The pig iron formed is characterized using XRD, microscopic analysis. It can be concluded that 90% yield of pig iron can be achieved when the blend ratio of TMO:HMO is 1:4.5. This means for 90% yield, the maximum TMO that could be used in the blend is about 18%.

Keywords: Briquetting reduction, lean grade coal, smelting reduction, TMO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
1161 Some Physical Properties of Musk Lime (Citrus Microcarpa)

Authors: M.H.R.O. Abdullah, P.E. Ch'ng, N.A. Yunus

Abstract:

Some physical properties of musk lime (Citrus microcarpa) were determined in this study. The average moisture content (wet basis) of the fruit was found to be 85.10 (±0.72) %. The mean of length, width and thickness of the fruit was 26.36 (±0.97), 26.40 (±1.04) and 25.26 (±0.94) mm respectively. The average value for geometric mean diameter, sphericity, aspect ratio, mass, surface area, volume, true density, bulk density and porosity was 26.00 (±0.82) mm, 98.67 (±2.04) %, 100.23 (±3.28) %, 10.007 (±0.878) g, 2125.07 (±133.93) mm2, 8800.00 (±731.82) mm3, 1002.87 (±39.16) kgm-3, 501.70 (±22.58) kgm-3 and 49.89 (±3.15) % respectively. The coefficient of static friction on four types of structural surface was found to be varying from 0.238 (±0.025) for glass to 0.247 (±0.024) for steel surface.

Keywords: Musk lime, Citrus microcarpa, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3309
1160 Morphology Feature of Nanostructure Bainitic Steel after Tempering Treatment

Authors: C. Y. Chen, C. C. Chen, J. S. Lin

Abstract:

The microstructure characterization of tempered nanocrystalline bainitic steel is investigated in the present study. It is found that two types of plastic relaxation, dislocation debris and nanotwin, occurs in the displacive transformation due to relatively low transformation temperature and high carbon content. Because most carbon atoms trap in the dislocation, high dislocation density can be sustained during the tempering process. More carbides only can be found in the high tempered temperature due to intense recovery progression.

Keywords: Nanostructure Bainitic Steel, Tempered, TEM, Nano-Twin, Dislocation Debris, Accommodation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
1159 A Review on Application of Waste Tire in Concrete

Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su

Abstract:

The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.

Keywords: Waste rubber aggregates, Microstructure, Treatment methods, Size and content effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4675
1158 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification

Authors: Rebecca Angeles

Abstract:

This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.

Keywords: Internet of things, IoT, radio frequency identification, supply chain management, business intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
1157 Image Retrieval: Techniques, Challenge, and Trend

Authors: Hui Hui Wang, Dzulkifli Mohamad, N.A Ismail

Abstract:

This paper attempts to discuss the evolution of the retrieval techniques focusing on development, challenges and trends of the image retrieval. It highlights both the already addressed and outstanding issues. The explosive growth of image data leads to the need of research and development of Image Retrieval. However, Image retrieval researches are moving from keyword, to low level features and to semantic features. Drive towards semantic features is due to the problem of the keywords which can be very subjective and time consuming while low level features cannot always describe high level concepts in the users- mind.

Keywords: content based image retrieval, keyword based imageretrieval, semantic gap, semantic image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
1156 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: Wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
1155 Nonparametric Control Chart Using Density Weighted Support Vector Data Description

Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek

Abstract:

In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.

Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
1154 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour

Authors: Libor Zachoval, Daire O Broin, Oisin Cawley

Abstract:

E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).

Keywords: Compliance Course, Corporate Training, Learner Behaviours, xAPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 569
1153 Workplace Learners- Perceptions towards a Blended Learning Approach

Authors: Denys Lupshenyuk, Jean Adams

Abstract:

The current paper presents the findings of a research study on learners- barriers and motivators engaged into blended programs in a workplace context. In this study, the participants were randomly assigned to one of four parallel e-learning courses, each of which was delivered using a different learning strategy. Data were collected through web-based and telephone surveys developed by the researchers. The results showed that vague instruction, time management, and insufficient feedback were the top-most barriers to blended learning. The major motivators for blended learning included content relevance, flexibility in time, and the ability to work at own pace.

Keywords: Adult education, barriers, blended learning, motivators, workplace learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
1152 Web-Based Tools to Increase Public Understanding of Nuclear Technology and Food Irradiation

Authors: Denise Levy, Anna Lucia C. H. Villavicencio

Abstract:

Food irradiation is a processing and preservation technique to eliminate insects and parasites and reduce disease-causing microorganisms. Moreover, the process helps to inhibit sprouting and delay ripening, extending fresh fruits and vegetables shelf-life. Nevertheless, most Brazilian consumers seem to misunderstand the difference between irradiated food and radioactive food and the general public has major concerns about the negative health effects and environmental contamination. Society´s judgment and decision making are directly linked to perceived benefits and risks. The web-based project entitled ‘Scientific information about food irradiation: Internet as a tool to approach science and society’ was created by the Nuclear and Energetic Research Institute (IPEN), in order to offer an interdisciplinary approach to science education, integrating economic, ethical, social and political aspects of food irradiation. This project takes into account that, misinformation and unfounded preconceived ideas impact heavily on the acceptance of irradiated food and purchase intention by the Brazilian consumer. Taking advantage of the potential value of the Internet to enhance communication and education among general public, a research study was carried out regarding the possibilities and trends of Information and Communication Technologies among the Brazilian population. The content includes concepts, definitions and Frequently Asked Questions (FAQ) about processes, safety, advantages, limitations and the possibilities of food irradiation, including health issues, as well as its impacts on the environment. The project counts on eight self-instructional interactive web courses, situating scientific content in relevant social contexts in order to encourage self-learning and further reflections. Communication is a must to improve public understanding of science. The use of information technology for quality scientific divulgation shall contribute greatly to provide information throughout the country, spreading information to as many people as possible, minimizing geographic distances and stimulating communication and development.

Keywords: Food irradiation, multimedia learning tools, nuclear science, society and education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
1151 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks, bit-serial neural processor, FPGA, Neural Processing Element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
1150 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple factorial correspondence analysis, principal component analysis, factor analysis, E.U.-28 countries, statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
1149 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques

Authors: Abegunde Linda, Adedeji Oluwatola, Tope-Ajayi Opeyemi

Abstract:

Maize constitutes a major agrarian production for use by the vast population but despite its economic importance; it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physicochemical variations in soil properties and other land attributes over space using a Geographic Information System (GIS) framework. Physicochemical parameters of importance selected include slope, landuse, physical and chemical properties of the soil, and climatic variables. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification, using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.

Keywords: AHP, GIS, MCE, Suitability, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3899
1148 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition

Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine

Abstract:

In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.

Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
1147 A Monte Carlo Method to Data Stream Analysis

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham

Abstract:

Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.

Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1146 Fingerprint Identification using Discretization Technique

Authors: W. Y. Leng, S. M. Shamsuddin

Abstract:

Fingerprint based identification system; one of a well known biometric system in the area of pattern recognition and has always been under study through its important role in forensic science that could help government criminal justice community. In this paper, we proposed an identification framework of individuals by means of fingerprint. Different from the most conventional fingerprint identification frameworks the extracted Geometrical element features (GEFs) will go through a Discretization process. The intention of Discretization in this study is to attain individual unique features that could reflect the individual varianceness in order to discriminate one person from another. Previously, Discretization has been shown a particularly efficient identification on English handwriting with accuracy of 99.9% and on discrimination of twins- handwriting with accuracy of 98%. Due to its high discriminative power, this method is adopted into this framework as an independent based method to seek for the accuracy of fingerprint identification. Finally the experimental result shows that the accuracy rate of identification of the proposed system using Discretization is 100% for FVC2000, 93% for FVC2002 and 89.7% for FVC2004 which is much better than the conventional or the existing fingerprint identification system (72% for FVC2000, 26% for FVC2002 and 32.8% for FVC2004). The result indicates that Discretization approach manages to boost up the classification effectively, and therefore prove to be suitable for other biometric features besides handwriting and fingerprint.

Keywords: Discretization, fingerprint identification, geometrical features, pattern recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
1145 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation

Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana

Abstract:

This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.

Keywords: Brain Computer Interface (BCI), gait trainer, Spinal Cord Injury (SCI), neurorehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
1144 Web portal As A Knowledge Management System In The Universities

Authors: Marjan Mansourvar, Norizan Mohd Yasin

Abstract:

The development of Web has affected different aspects of our lives, such as communication, sharing knowledge, searching for jobs, social activities, etc. The web portal as a gateway in the World Wide Web is a starting point for people who are connecting to the Internet. The web portal as the type of knowledge management system provides a rich space to share and search information as well as communication services like free email or content provision for the users. This research aims to discover the university needs to the web portal as a necessary tool for students in the universities to help them in getting the required information. A survey was conducted to gather students' requirements which can be incorporated in to portal to be developed.

Keywords: Knowledge, Knowledge management system, Knowledge sharing, web portal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
1143 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment, deep neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
1142 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an  enormous number of applications, cyber-threats have significantly  increased accordingly. Thus, accurate detection of malicious traffic in  a timely manner is a critical concern in today’s Internet for security.  One approach for intrusion detection is to use Machine Learning (ML)  techniques. Several methods based on ML algorithms have been  introduced over the past years, but they are largely limited in terms of  detection accuracy and/or time and space complexity to run. In this  work, we present a novel method for intrusion detection that  incorporates a set of supervised learning algorithms. The proposed  technique provides high accuracy and outperforms existing techniques  that simply utilizes a single learning method. In addition, our  technique relies on partial flow information (rather than full  information) for detection, and thus, it is light-weight and desirable for  online operations with the property of early identification. With the  mid-Atlantic CCDC intrusion dataset publicly available, we show that  our proposed technique yields a high degree of detection rate over 99%  with a very low false alarm rate (0.4%). 

 

Keywords: Intrusion Detection, Supervised Learning, Traffic Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1141 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
1140 A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation

Authors: D. R. Delgado Sobrino, P. Košťál, J. Oravcová

Abstract:

Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.

Keywords: Flexible/Intelligent Manufacturing System/Cell (F/IMS/C), material flow/design/configuration (MF/D/C), workstation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1139 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: O. Takakuwa, Y. Mano, H. Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: Hydrogen embrittlement, Residual stress, Surface finishing, Stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054