Search results for: hierarchical text classification
246 Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell
Authors: Mahanijah Md Kamal., Dingli Yu
Abstract:
This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.
Keywords: Polymer electrolyte membrane fuel cell, radial basis function neural networks, fault detection, fault isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814245 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland
Authors: Sotirios Raptis
Abstract:
Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.
Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460244 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: Noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990243 A Corpus-Based Approach to Understanding Market Access in Fisheries and Aquaculture: A Systematic Literature Review
Authors: Cheryl Marie Cordeiro
Abstract:
Although fisheries and aquaculture studies might seem marginal to international business (IB) studies in general, fisheries and aquaculture IB (FAIB) management is currently facing increasing pressure to meet global demand and consumption for fish in the next coming decades. In part address to this challenge, the purpose of this systematic review of literature (SLR) study is to investigate the use of the term ‘market access’ in its context of use in the generic literature and business sector discourse, in comparison to the more specific literature and discourse in fisheries, aquaculture and seafood. This SLR aims to uncover the knowledge/interest gaps between the academic subject discourses and business sector practices. Corpus driven in methodology and using a triangulation method of three different text analysis software including AntConc, VOSviewer and Web of Science (WoS) analytics, the SLR results indicate a gap in conceptual knowledge and business practices in how ‘market access’ is conceived and used in the context of the pharmaceutical healthcare industry and FAIB research and practice. While it is acknowledged that the product orientation of different business sectors might differ, this SLR study works with the assumption that both business sectors are global in orientation. These business sectors are complex in their operations from product to market. This SLR suggests a conceptual model in understanding the challenges, the potential barriers as well as avenues for solutions to developing market access for FAIB.
Keywords: Market access, fisheries and aquaculture, international business, systematic literature review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945242 Identification and Classification of Gliadin Genes in Iranian Diploid Wheat
Authors: Jafar Ahmadi, Alireza Pour-Aboughadareh
Abstract:
Wheat is the first and the most important grain of the world and its bakery property is due to glutenin and gliadin qualities. Wheat seed proteins were divided into four groups according to solubility including albumin, globulin, glutenin and prolamin or gliadin. Gliadins are major components of the storage proteins in wheat endosperm. It seems that little information is available about gliadin genes in Iranian wild relatives of wheat. Thus, the aim of this study was the evaluation of the wheat wild relatives collected from different origins of Zagros Mountains in Iran, in terms of coding gliadin genes using specific primers. For this, forty accessions of Triticum boeoticum and Triticum urartu were selected for this study. For each accession, genomic DNA was extracted and PCRs were performed in total volumes of 15 μl. The amplification products were separated on 1.5% agarose gels. In results, for Gli-2A locus three allelic variants were detected by Gli-2As primer pairs. The sizes of PCR products for these alleles were 210, 490 and 700 bp. Only five (13%) and two accessions (5%) produced 700 and 490 bp fragments when their DNA was amplified with the Gli.As.2 primer pairs. However, 93% of the accessions carried allele 210 bp, and only 8% did not any product for this marker. Therefore, these germplasm could be used as rich gene pool to broaden the genetic base of bread wheat.Keywords: Diploied wheat, gliadin, Triticum boeoticum, Triticum urartu.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951241 Treatment of Inorganic Filler Surface by Silane-Coupling Agent: Investigation of Treatment Condition and Analysis of Bonding State of Reacted Agent
Authors: Hiroshi Hirano, Joji Kadota, Toshiyuki Yamashita, Yasuyuki Agari
Abstract:
It is well known that enhancing interfacial adhesion between inorganic filler and matrix resin in a composite lead to favorable properties such as excellent mechanical properties, high thermal resistance, prominent electric insulation, low expansion coefficient, and so on. But it should be avoided that much excess of coupling agent is reacted due to a negative impact of their final composite-s properties. There is no report to achieve classification of the bonding state excepting investigation of coating layer thickness. Therefore, the analysis of the bonding state of the coupling agent reacted with the filler surface such as BN particles with less functional group and silica particles having much functional group was performed by thermal gravimetric analysis and pyrolysis GC/MS. The reacted number of functional groups on the silane-coupling agent was classified as a result of the analysis. Thus, we succeeded in classifying the reacted number of the functional groups as a result of this study.Keywords: Inorganic filler, boron nitride, surface treatment, coupling agent, analysis of bonding state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5043240 Challenging the Stereotypes: A Critical Study of Chotti Munda and His Arrow and Sula
Authors: Khushboo Gokani, Renu Josan
Abstract:
Mahasweta Devi and Toni Morrison are the two stalwarts of the Indian English and the Afro-American literature respectively. The writings of these two novelists are authentic and powerful records of the lives of the people because much of their personal experiences have gone into the making of their works. Devi, a representative force of the Indian English literature, is also a social activist working with the tribals of Bihar, Jharkhand, Orissa and West Bengal. Most of her works echo the lives and struggles of the subalterns as is evident in her “best beloved book” Chotti Munda and His Arrow. The novelist focuses on the struggle of the tribals against the colonial and the feudal powers to create their own identity, thereby, embarking on the ideological project of ‘setting the record straight’. The Nobel Laureate Toni Morrison, on the other hand, brings to the fore the crucial issues of gender, race and class in many of her significant works. In one of her representative works Sula, the protagonist emerges as a non- conformist and directly confronts the notion of a ‘good woman’ nurtured by the community of the Blacks. In addition to this, the struggle of the Blacks against the White domination, also become an important theme of the text. The thrust of the paper lies in making a critical analysis of the portrayal of the heroic attempts of the subaltern protagonist and the artistic endeavor of the novelists in challenging the stereotypes.
Keywords: Subaltern, The Centre And The Periphery, Struggle Of The Muted Groups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3695239 A Qualitative Study of Health-Related Beliefs and Practices among Vegetarians
Authors: Lorena Antonovici, Maria Nicoleta Turliuc
Abstract:
The process of becoming a vegetarian involves changes in several life aspects, including health. Despite its relevance, however, little research has been carried out to analyze vegetarians' self-perceived health, and even less empirical attention has received in the Romanian population. This study aimed to assess health-related beliefs and practices among vegetarian adults in a Romanian sample. We have undertaken 20 semi-structured interviews (10 males, 10 females) based on a snowball sample with a mean age of 31 years. The interview guide was divided into three sections: causes of adopting the diet, general aspects (beliefs, practices, tensions, and conflicts) and consequences of adopting the diet (significant changes, positive aspects, and difficulties, physical and mental health). Additional anamnestic data were reported by means of a questionnaire. Data analyses were performed using Tropes text analysis software (v. 8.2) and SPSS software (v. 24.0.) Findings showed that most of the participants considered a vegetarian diet as a natural and healthy choice as opposed to meat-eating, which is not healthy, and its consumption should be moderated among omnivores. A higher proportion of participants (65%) had an average body mass index (BMI), and several women even assumed having certain affections that no longer occur after following a vegetarian diet. Moreover, participants admitted having better moods and mental health status, given their self-contentment with the dietary choice. Relatives were perceived as more skeptical about their practices than others, and especially women had this view. This study provides a valuable insight into health-related beliefs and practices and how a vegetarian diet might interact.
Keywords: Health-related beliefs, health, practices, vegetarians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777238 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection
Authors: K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.Keywords: Wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850237 Nonparametric Control Chart Using Density Weighted Support Vector Data Description
Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek
Abstract:
In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.
Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121236 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks, bit-serial neural processor, FPGA, Neural Processing Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573235 Hash Based Block Matching for Digital Evidence Image Files from Forensic Software Tools
Abstract:
Internet use, intelligent communication tools, and social media have all become an integral part of our daily life as a result of rapid developments in information technology. However, this widespread use increases crimes committed in the digital environment. Therefore, digital forensics, dealing with various crimes committed in digital environment, has become an important research topic. It is in the research scope of digital forensics to investigate digital evidences such as computer, cell phone, hard disk, DVD, etc. and to report whether it contains any crime related elements. There are many software and hardware tools developed for use in the digital evidence acquisition process. Today, the most widely used digital evidence investigation tools are based on the principle of finding all the data taken place in digital evidence that is matched with specified criteria and presenting it to the investigator (e.g. text files, files starting with letter A, etc.). Then, digital forensics experts carry out data analysis to figure out whether these data are related to a potential crime. Examination of a 1 TB hard disk may take hours or even days, depending on the expertise and experience of the examiner. In addition, it depends on examiner’s experience, and may change overall result involving in different cases overlooked. In this study, a hash-based matching and digital evidence evaluation method is proposed, and it is aimed to automatically classify the evidence containing criminal elements, thereby shortening the time of the digital evidence examination process and preventing human errors.
Keywords: Block matching, digital evidence, hash list.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358234 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques
Authors: Abegunde Linda, Adedeji Oluwatola, Tope-Ajayi Opeyemi
Abstract:
Maize constitutes a major agrarian production for use by the vast population but despite its economic importance; it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physicochemical variations in soil properties and other land attributes over space using a Geographic Information System (GIS) framework. Physicochemical parameters of importance selected include slope, landuse, physical and chemical properties of the soil, and climatic variables. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification, using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.
Keywords: AHP, GIS, MCE, Suitability, Zea mays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3889233 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition
Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine
Abstract:
In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808232 A Monte Carlo Method to Data Stream Analysis
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham
Abstract:
Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417231 Fingerprint Identification using Discretization Technique
Authors: W. Y. Leng, S. M. Shamsuddin
Abstract:
Fingerprint based identification system; one of a well known biometric system in the area of pattern recognition and has always been under study through its important role in forensic science that could help government criminal justice community. In this paper, we proposed an identification framework of individuals by means of fingerprint. Different from the most conventional fingerprint identification frameworks the extracted Geometrical element features (GEFs) will go through a Discretization process. The intention of Discretization in this study is to attain individual unique features that could reflect the individual varianceness in order to discriminate one person from another. Previously, Discretization has been shown a particularly efficient identification on English handwriting with accuracy of 99.9% and on discrimination of twins- handwriting with accuracy of 98%. Due to its high discriminative power, this method is adopted into this framework as an independent based method to seek for the accuracy of fingerprint identification. Finally the experimental result shows that the accuracy rate of identification of the proposed system using Discretization is 100% for FVC2000, 93% for FVC2002 and 89.7% for FVC2004 which is much better than the conventional or the existing fingerprint identification system (72% for FVC2000, 26% for FVC2002 and 32.8% for FVC2004). The result indicates that Discretization approach manages to boost up the classification effectively, and therefore prove to be suitable for other biometric features besides handwriting and fingerprint.Keywords: Discretization, fingerprint identification, geometrical features, pattern recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360230 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation
Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana
Abstract:
This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.Keywords: Brain Computer Interface (BCI), gait trainer, Spinal Cord Injury (SCI), neurorehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278229 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.
Keywords: Iot, activity recognition, automatic classification, unconstrained environment, deep neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133228 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).
Keywords: Intrusion Detection, Supervised Learning, Traffic Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035227 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736226 Analysis of the Energetic Feature of the Loaded Gait with Variation of the Trunk Flexion Angle
Authors: Ji-il Park, Hyungtae Seo, Jihyuk Park, Kwang jin Choi, Kyung-Soo Kim, Soohyun Kim
Abstract:
The purpose of the research is to investigate the energetic feature of the backpack load on soldier’s gait with variation of the trunk flexion angle. It is believed that the trunk flexion variation of the loaded gait may cause a significant difference in the energy cost which is often in practice in daily life. To this end, seven healthy Korea military personnel participated in the experiment and are tested under three different walking postures comprised of the small, natural and large trunk flexion. There are around 5 degree differences of waist angle between each trunk flexion. The ground reaction forces were collected from the force plates and motion kinematic data are measured by the motion capture system. Based on these data, the impulses, momentums and mechanical works done on the center of body mass (COM) during the double support phase were computed. The result shows that the push-off and heel strike impulse are not relevant to the trunk flexion change, however the mechanical work by the push-off and heel strike were changed by the trunk flexion variation. It is because the vertical velocity of the COM during the double support phase is increased significantly with an increase in the trunk flexion. Therefore, we can know that the gait efficiency of the loaded gait depends on the trunk flexion angle. Also, even though the gravitational impulse and pre-collision momentum are changed by the trunk flexion variation, the after-collision momentum is almost constant regardless of the trunk flexion variation.
Keywords: Loaded gait, collision, impulse, gravity, heel strike, push-off, gait analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842225 A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation
Authors: D. R. Delgado Sobrino, P. Košťál, J. Oravcová
Abstract:
Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.Keywords: Flexible/Intelligent Manufacturing System/Cell (F/IMS/C), material flow/design/configuration (MF/D/C), workstation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611224 An Exploration of the Dimensions of Place-Making: A South African Case Study
Authors: W. J. Strydom, K. Puren
Abstract:
Place-making is viewed here as an empowering process in which people represent, improve and maintain their spatial (natural or built) environment. With the above-mentioned in mind, place-making is multi-dimensional and include a spatial dimension (including visual properties or the end product/plan), a procedural dimension during which (negotiation/discussion of ideas with all relevant stakeholders in terms of end product/plan) and a psychological dimension (inclusion of intrinsic values and meanings related to a place in the end product/plan). These three represent dimensions of place-making. The purpose of this paper is to explore these dimensions of place-making in a case study of a local community in Ikageng, Potchefstroom, North-West Province, South Africa. This case study represents an inclusive process that strives to empower a local community (forcefully relocated due to Apartheid legislation in South Africa). This case study focussed on the inclusion of participants in the decision-making process regarding their daily environment. By means of focus group discussions and a collaborative design workshop, data is generated and ultimately creates a linkage with the theoretical dimensions of place-making. This paper contributes to the field of spatial planning due to the exploration of the dimensions of place-making and the relevancy of this process on spatial planning (especially in a South African setting).
Keywords: Case study, place-making, spatial planning, spatial dimension, procedural dimension, psychological dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706223 The Role of Ideophones: Phonological and Morphological Characteristics in Literature
Authors: Cristina Bahón Arnaiz
Abstract:
Many Asian languages, such as Korean and Japanese, are well-known for their wide use of sound symbolic words or ideophones. This is a very particular characteristic which enriches its lexicon hugely. Ideophones are a class of sound symbolic words that utilize sound symbolism to express aspects, states, emotions, or conditions that can be experienced through the senses, such as shape, color, smell, action or movement. Ideophones have very particular characteristics in terms of sound symbolism and morphology, which distinguish them from other words. The phonological characteristics of ideophones are vowel ablaut or vowel gradation and consonant mutation. In the case of Korean, there are light vowels and dark vowels. Depending on the type of vowel that is used, the meaning will slightly change. Consonant mutation, also known as consonant ablaut, contributes to the level of intensity, emphasis, and volume of an expression. In addition to these phonological characteristics, there is one main morphological singularity, which is reduplication and it carries the meaning of continuity, repetition, intensity, emphasis, and plurality. All these characteristics play an important role in both linguistics and literature as they enhance the meaning of what is trying to be expressed with incredible semantic detail, expressiveness, and rhythm. The following study will analyze the ideophones used in a single paragraph of a Korean novel, which add incredible yet subtle detail to the meaning of the words, and advance the expressiveness and rhythm of the text. The results from analyzing one paragraph from a novel, after presenting the phonological and morphological characteristics of Korean ideophones, will evidence the important role that ideophones play in literature.
Keywords: Ideophones, mimetic words, phonomimes, phenomimes, psychomimes, sound symbolism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106222 A Hybrid Feature Selection by Resampling, Chi squared and Consistency Evaluation Techniques
Authors: Amir-Massoud Bidgoli, Mehdi Naseri Parsa
Abstract:
In this paper a combined feature selection method is proposed which takes advantages of sample domain filtering, resampling and feature subset evaluation methods to reduce dimensions of huge datasets and select reliable features. This method utilizes both feature space and sample domain to improve the process of feature selection and uses a combination of Chi squared with Consistency attribute evaluation methods to seek reliable features. This method consists of two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure to find the optimal feature space by applying Chi squared, Consistency subset evaluation methods and genetic search. Experiments on various sized datasets from UCI Repository of Machine Learning databases show that the performance of five classifiers (Naïve Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) improves simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods.Keywords: feature selection, resampling, reliable features, Consistency Subset Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583221 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670220 Evaluation of Cast-in-Situ Pile Condition Using Pile Integrity Test
Authors: Mohammad I. Hossain, Omar F. Hamim
Abstract:
This paper presents a case study on a pile integrity test for assessing the integrity of piles as well as a physical dimension (e.g., cross-sectional area, length), continuity, and consistency of the pile materials. The recent boom in the socio-economic condition of Bangladesh has given rise to the building of high-rise commercial and residential infrastructures. The advantage of the pile integrity test lies in the fact that it is possible to get an approximate indication regarding the quality of the sub-structure before commencing the construction of the super-structure. This paper aims at providing a classification of cast-in-situ piles based on characteristic reflectograms obtained using the Sonic Integrity Testing program for the sub-soil condition of Narayanganj, Bangladesh. The piles have been classified as 'Pile Type-1', 'Pile Type-2', 'Pile Type-3', 'Pile type-4', 'Pile Type-5' or 'Pile Type-6' from the visual observations of reflections from the generated stress waves by striking the pile head with a handheld hammer. With respect to construction quality and integrity, piles have been further classified into three distinct categories, i.e., satisfactory, may be satisfactory, and unsatisfactory.
Keywords: Cast-in-situ piles, characteristic reflectograms, pile integrity test, sonic integrity testing program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680219 The Use of Information and Communication Technologies in Electoral Procedures: Comments on Electronic Voting Security
Authors: Magdalena Musiał-Karg
Abstract:
The expansion of telecommunication and progress of electronic media constitute important elements of our times. The recent worldwide convergence of information and communication technologies (ICT) and dynamic development of the mass media is leading to noticeable changes in the functioning of contemporary states and societies. Currently, modern technologies play more and more important roles and filter down to almost every field of contemporary human life. It results in the growth of online interactions that can be observed by the inconceivable increase in the number of people with home PCs and Internet access. The proof of it is undoubtedly the emergence and use of concepts such as e-society, e-banking, e-services, e-government, e-government, e-participation and e-democracy. The newly coined word e-democracy evidences that modern technologies have also been widely used in politics. Without any doubt in most countries all actors of political market (politicians, political parties, servants in political/public sector, media) use modern forms of communication with the society. Most of these modern technologies progress the processes of getting and sending information to the citizens, communication with the electorate, and also – which seems to be the biggest advantage – electoral procedures. Thanks to implementation of ICT the interaction between politicians and electorate are improved. The main goal of this text is to analyze electronic voting (e-voting) as one of the important forms of electronic democracy in terms of security aspects. The author of this paper aimed at answering the questions of security of electronic voting as an additional form of participation in elections and referenda.
Keywords: Electronic democracy, electronic participation, electronic voting, security of e-voting, ICT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068218 On the Computation of a Common n-finger Robotic Grasp for a Set of Objects
Authors: Avishai Sintov, Roland Menassa, Amir Shapiro
Abstract:
Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.
Keywords: Common Grasping, Search Algorithm, Robotic End-Effector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675217 Identifying E-Learning Components at North-West University, Mafikeng Campus
Authors: Sylvia Tumelo Nthutang, Nehemiah Mavetera
Abstract:
Educational institutions are under pressure from their competitors. Regulators and community groups need educational institutions to adopt appropriate business and organizational practices. Globally, educational institutions are now using e-learning as the best teaching and learning approach. E-learning is becoming the center of attention to the learning institutions, educational systems and software inventors. North-West University (NWU) is currently using eFundi, a Learning Management System (LMS). LMS are all information systems and procedures that adds value to students learning and support the learning material in text or any multimedia files. With various e-learning tools, students would be able to access all the materials related to the course in electronic copies. The study was tasked with identifying the e-learning components at the NWU, Mafikeng campus. Quantitative research methodology was considered in data collection and descriptive statistics for data analysis. The Activity Theory (AT) was used as a theory to guide the study. AT outlines the limitations amongst e-learning at the macro-organizational level (plan, guiding principle, campus-wide solutions) and micro-organization (daily functioning practice, collaborative transformation, specific adaptation). On a technological environment, AT gives people an opportunity to change from concentrating on computers as an area of concern but also understand that technology is part of human activities. The findings have identified the university’s current IT tools and knowledge on e-learning elements. It was recommended that university should consider buying computer resources that consumes less power and practice e-learning effectively.
Keywords: E-learning, information and communication technology, teaching, and virtual learning environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079