Search results for: Online project based learning
11741 Assessment of Master’s Program in Technology
Authors: Niaz Latif, Joy L. Colwell
Abstract:
Following implementation of a master’s level graduate degree program in technology, a research-based assessment of the program was undertaken to determine how well the program met its goals and objectives, and the impact of the degree program on the objectives and the needs of its graduates. Upon review of the survey data, it was concluded that the program was meeting its goals and objectives, and that the directed project option should be encouraged.
Keywords: Master’s Degree, Graduate Program, Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142311740 6DSpaces: Multisensory Interactive Installations
Authors: Pedro Campos, Miguel Campos, Carlos Ferreira
Abstract:
Interactive installations for public spaces are a particular kind of interactive systems, the design of which has been the subject of several research studies. Sensor-based applications are becoming increasingly popular, but the human-computer interaction community is still far from reaching sound, effective large-scale interactive installations for public spaces. The 6DSpaces project is described in this paper as a research approach based on studying the role of multisensory interactivity and how it can be effectively used to approach people to digital, scientific contents. The design of an entire scientific exhibition is described and the result was evaluated in the real world context of a Science Centre. Conclusions bring insight into how the human-computer interaction should be designed in order to maximize the overall experience.Keywords: interaction design, human-computer interaction, multimedia, multisensory installations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178011739 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109611738 Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects
Authors: Refaat H. Abd El Razek, Ahmed M. Diab, Sherif M. Hafez, Remon F. Aziz
Abstract:
Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.
Keywords: Project management, typical (repetitive) large scale projects, line of balance, multi-objective optimization, genetic algorithms, time-cost-quality trade-offs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306311737 On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation
Authors: Montri Maleewong, Sirod Sirisup
Abstract:
The POD-assisted projective integration method based on the equation-free framework is presented in this paper. The method is essentially based on the slow manifold governing of given system. We have applied two variants which are the “on-line" and “off-line" methods for solving the one-dimensional viscous Bergers- equation. For the on-line method, we have computed the slow manifold by extracting the POD modes and used them on-the-fly along the projective integration process without assuming knowledge of the underlying slow manifold. In contrast, the underlying slow manifold must be computed prior to the projective integration process for the off-line method. The projective step is performed by the forward Euler method. Numerical experiments show that for the case of nonperiodic system, the on-line method is more efficient than the off-line method. Besides, the online approach is more realistic when apply the POD-assisted projective integration method to solve any systems. The critical value of the projective time step which directly limits the efficiency of both methods is also shown.
Keywords: Projective integration, POD method, equation-free.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135411736 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176311735 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.
Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7111734 An Evaluation of the Usability of IT Faculty Educational Portal at University of Benghazi
Authors: Nasser M. Amaitik, Mohammed J. El-Sahli
Abstract:
Evaluation of educational portals is an important subject area that needs more attention from researchers. A university that has an educational portal which is difficult to use and interact by teachers or students or management staff can reduce the position and reputation of the university. Therefore, it is important to have the ability to make an evaluation of the quality of e-services the university provide to improve them over time. The present study evaluates the usability of the Information Technology Faculty portal at University of Benghazi. Two evaluation methods were used: a questionnaire-based method and an online automated tool-based method. The first method was used to measure the portal's external attributes of usability (Information, Content and Organization of the portal, Navigation, Links and Accessibility, Aesthetic and Visual Appeal, Performance and Effectiveness and educational purpose) from users' perspectives, while the second method was used to measure the portal's internal attributes of usability (number and size of HTML files, number and size of images, load time, HTML check errors, browsers compatibility problems, number of bad and broken links), which cannot be perceived by the users. The study showed that some of the usability aspects have been found at the acceptable level of performance and quality, and some others have been found otherwise. In general, it was concluded that the usability of IT faculty educational portal generally acceptable. Recommendations and suggestions to improve the weakness and quality of the portal usability are presented in this study.Keywords: Automated tools-based evaluation, Educational portals, Evaluation criteria, Questionnaire-based evaluation, Usability evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200011733 Family and Young Learners´ Scholastic Success
Authors: Helena Vomackova
Abstract:
This contribution examines the relationship between the family environment and the level of young pupils’ scholastic success. It comments on the partial results of a research probe carried out in the year 2012 on a sample of 412 Czech Republic primary school pupils of the fourth, fifth and sixths forms within the Project IGA 43 201 15 0004 01. The key links of this project were monitored in relation to the highest education level achieved by the learners´ parents, as well as to the type of family it is (in particular its ability to function), to component factors specific to the family climate (their willingness to share information, communication, parental control) and, finally, to the number of children in the family as an important socialization constituent.
Keywords: Family environment factors, scholastic success, parents’ education, family type, family climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145111732 The Analysis of Secondary Case Studies as a Starting Point for Grounded Theory Studies: An Example from the Enterprise Software Industry
Authors: Abilio Avila, Orestis Terzidis
Abstract:
A fundamental principle of Grounded Theory (GT) is to prevent the formation of preconceived theories. This implies the need to start a research study with an open mind and to avoid being absorbed by the existing literature. However, to start a new study without an understanding of the research domain and its context can be extremely challenging. This paper presents a research approach that simultaneously supports a researcher to identify and to focus on critical areas of a research project and prevent the formation of prejudiced concepts by the current body of literature. This approach comprises of four stages: Selection of secondary case studies, analysis of secondary case studies, development of an initial conceptual framework, development of an initial interview guide. The analysis of secondary case studies as a starting point for a research project allows a researcher to create a first understanding of a research area based on real-world cases without being influenced by the existing body of theory. It enables a researcher to develop through a structured course of actions a firm guide that establishes a solid starting point for further investigations. Thus, the described approach may have significant implications for GT researchers who aim to start a study within a given research area.Keywords: Grounded theory, qualitative research, secondary case studies, secondary data analysis, interview guide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184011731 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.
Keywords: Road safety, crash prediction, exploratory analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8111730 Teachers Leadership Dimension in History Learning
Authors: Lee Bih Ni, Zulfhikar Rabe, Nurul Asyikin Hassan
Abstract:
The Ministry of Education Malaysia dynamically and drastically made the subject of History mandatory to be in force in 2013. This is in recognition of the nation's heritage and treasures in maintaining true facts and information for future generations of the State. History reveals the civilization of a nation and the fact of national cultural heritage. Civilization needs to be preserved as a legacy of sovereign heritage. Today's generation is the catalyst for future heirs who will support the principle and direction of the country. In line with the National Education Philosophy that aims to shape the potential development of individuals holistically and uniquely in order to produce a balanced and harmonious student in terms of intellectual, spiritual, emotional and physical. Hence, understanding the importance of studying the history subject as a pillar of identity and the history of nationhood is to be a priority in the pursuit of knowledge and empowering the spirit of statehood that is nurtured through continuous learning at school. Judging from the aspect of teacher leadership role in integrating history in a combined way based on Teacher Education Philosophy. It empowers the teaching profession towards the teacher to support noble character. It also supports progressive and scientific views. Teachers are willing to uphold the State's aspirations and celebrate the country's cultural heritage. They guarantee individual development and maintain a united, democratic, progressive and disciplined society. Teacher's role as a change and leadership agent in education begins in the classroom through formal or informal educational processes. This situation is expanded in schools, communities and countries. The focus of this paper is on the role of teacher leadership influencing the effectiveness of teaching and learning history in the classroom environment. Leadership guides to teachers' perceptions on the role of teacher leadership, teaching leadership, and the teacher leadership role and effective teacher leadership role. Discussions give emphasis on aspects of factors affecting the classroom environment, forming the classroom agenda, effective classroom implementation methods, suitable climate for historical learning and teacher challenges in implicating the effectiveness of teaching and learning processes.Keywords: Teacher leadership, leadership lessons, effective classroom, effective teacher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113311729 Six Sigma Process and its Impact on the Organizational Productivity
Authors: Masoud Hekmatpanah, Mohammad Sadroddin, Saeid Shahbaz, Farhad Mokhtari, Farahnaz Fadavinia
Abstract:
The six sigma method is a project-driven management approach to improve the organization-s products, services, and processes by continually reducing defects in the organization. Understanding the key features, obstacles, and shortcomings of the six sigma method allows organizations to better support their strategic directions, and increasing needs for coaching, mentoring, and training. It also provides opportunities to better implement six sigma projects. The purpose of this paper is the survey of six sigma process and its impact on the organizational productivity. So I have studied key concepts , problem solving process of six sigmaas well as the survey of important fields such as: DMAIC, six sigma and productivity applied programme, and other advantages of six sigma. In the end of this paper, present research conclusions. (direct and positive relation between six sigma and productivity)
Keywords: Six sigma, project management, quality, theory, productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697511728 Linux based Embedded Node for Capturing, Compression and Streaming of Digital Audio and Video
Authors: F.J. Suárez, J.C. Granda, J. Molleda, D.F. García
Abstract:
A prototype for audio and video capture and compression in real time on a Linux platform has been developed. It is able to visualize both the captured and the compressed video at the same time, as well as the captured and compressed audio with the goal of comparing their quality. As it is based on free code, the final goal is to run it in an embedded system running Linux. Therefore, we would implement a node to capture and compress such multimedia information. Thus, it would be possible to consider the project within a larger one aimed at live broadcast of audio and video using a streaming server which would communicate with our node. Then, we would have a very powerful and flexible system with several practical applications.
Keywords: Audio and video compression, Linux platform, live streaming, real time, visualization of captured and compressed video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155211727 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.
Keywords: Visual search, deep learning, convolutional neural network, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82311726 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.
Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17311725 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes
Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-ariyaskul
Abstract:
The production of Dimethyl acetal, Isovaleradehyde and Pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of Acetaldehyde, Methanol, Ethyl Acetate, 1-propanol, water, iso-amyl alcohol and iso-butyl alcohol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.
Keywords: Dimethyl acetal, Pyridine, wine, Aspen Plus, Isovaleradehyde, polymeric precursors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243711724 A Machine Learning-based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables
Authors: Ronit Chakraborty, Sugata Banerji
Abstract:
There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors including socio-economic, demographic, healthcare, public policy and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states, and, if they do, which factors are the most influential. The key findings of this study include (1) there is a confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the most influential predictive factors are identified, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) Florida is identified as a key outlier state pointing to a potential under-diagnosis of ASD.
Keywords: Autism Spectrum Disorder, ASD, clustering, Machine Learning, predictive modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67011723 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.
Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110811722 When Psychology Meets Ecology: Cognitive Flexibility for Quarry Rehabilitation
Authors: J. Fenianos, C. Khater, D. Brouillet
Abstract:
Ecological projects are often faced with reluctance from local communities hosting the project, especially when this project involves variation from preset ideas or classical practices. This paper aims at appreciating the contribution of environmental psychology through cognitive flexibility exercises to improve the acceptability of local communities in adopting more ecological rehabilitation scenarios. The study is based on a quarry site located in Bekaa- Lebanon. Four groups were considered with different levels of involvement, as follows: Group 1 is Training (T) – 50 hours of on-site training over 8 months, Group 2 is Awareness (A) – 2 hours of awareness raising session, Group 3 is Flexibility (F) – 2 hours of flexibility exercises and Group 4 is the Control (C). The results show that individuals in Group 3 (F) who followed flexibility sessions accept comparably the ecological rehabilitation option over the more classical one. This is also the case for the people in Group 1 (T) who followed a more time-demanding “on-site training”. Another experience was conducted on a second quarry site combining flexibility with awareness-raising. This research confirms that it is possible to reduce resistance to change thanks to a limited in-time intervention using cognitive flexibility. This methodological approach could be transferable to other environmental problems involving local communities and changes in preset perceptions.
Keywords: Acceptability, ecological restoration, environmental psychology, Lebanon, local communities, resistance to change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128211721 Knowledge Management and Tourism: An Exploratory Study Applied to Travel Agents in Egypt
Authors: Mohammad Soliman, Mohamed A. Abou-Shouk
Abstract:
Knowledge management focuses on the development, storage, retrieval, and dissemination of information and expertise. It has become an important tool to improve performance in tourism enterprises. This includes improving decision-making, developing customer services, and increasing sales and profits. Knowledge management adoption depends on human, organizational and technological factors. This study aims to explore the concept of knowledge management in travel agents in Egypt. It explores the requirements of adoption and its impact on performance in these agencies. The study targets Category A travel agents in Egypt. The population of the study encompasses Category A travel agents having online presence. An online questionnaire is used to collect data from managers of travel agents. This study is useful for travel agents who are in urgent need to restructure their intermediary role and support their survival in the global travel market. The study sheds light on the requirements of adoption and the expected impact on performance. This could help travel agents identify their situation and the determine the extent to which they are ready to adopt knowledge management. This study is contributing to knowledge by providing insights from the tourism sector in a developing country where the concept of knowledge management is still in its infancy stages.Keywords: Benefits, determinants, Egypt, knowledge management, travel agents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198011720 Students' Acceptance of Incorporating Emerging Communication Technologies in Higher Education in Kuwait
Authors: Bashaiar Alsanaa
Abstract:
Never has a revolution affected all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aimed to fill the void of research conducted around that topic. The study explored students' acceptance of incorporating communication technologies in higher education in Kuwait. Students' responses to survey questions presented an overview of the e-learning experience in this country, and drew a framework through which implications and suggestions for future research were discussed to better serve the advancement of e-education in developing countries.Keywords: Communication technologies, E-learning, Kuwait, Social media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169911719 Automation of the Maritime UAV Command, Control, Navigation Operations, Simulated in Real-Time Using Kinect Sensor: A Feasibility Study
Authors: Regius Asiimwe, Amir Anvar
Abstract:
This paper describes the process used in the automation of the Maritime UAV commands using the Kinect sensor. The AR Drone is a Quadrocopter manufactured by Parrot [1] to be controlled using the Apple operating systems such as iPhones and Ipads. However, this project uses the Microsoft Kinect SDK and Microsoft Visual Studio C# (C sharp) software, which are compatible with Windows Operating System for the automation of the navigation and control of the AR drone. The navigation and control software for the Quadrocopter runs on a windows 7 computer. The project is divided into two sections; the Quadrocopter control system and the Kinect sensor control system. The Kinect sensor is connected to the computer using a USB cable from which commands can be sent to and from the Kinect sensors. The AR drone has Wi-Fi capabilities from which it can be connected to the computer to enable transfer of commands to and from the Quadrocopter. The project was implemented in C#, a programming language that is commonly used in the automation systems. The language was chosen because there are more libraries already established in C# for both the AR drone and the Kinect sensor. The study will contribute toward research in automation of systems using the Quadrocopter and the Kinect sensor for navigation involving a human operator in the loop. The prototype created has numerous applications among which include the inspection of vessels such as ship, airplanes and areas that are not accessible by human operators.Keywords: UAV, AR drone, Kinect Sensors, Automation, Real time, C sharp, Microsoft Kinect SDK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292911718 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209211717 Application of Vortex Induced Vibration Energy Generation Technologies to the Offshore Oil and Gas Platform: The Preliminary Study
Authors: M. A. Zahari, S. S. Dol
Abstract:
The global demand for continuous and eco-friendly renewable energy as alternative to fossils fuels is large and ever growing in nowadays. This paper will focus on capability of Vortex Induced Vibration (VIV) phenomenon in generating alternative energy for offshore platform application. In order to maximize the potential of energy generation, the effects of lock in phenomenon and different geometries of cylinder were studied in this project. VIV is the motion induced on bluff body which creates alternating lift forces perpendicular to fluid flow. Normally, VIV is unwanted in order to prevent mechanical failure of the vibrating structures. But in this project, instead of eliminating these vibrations, VIV will be exploited to transform these vibrations into a valuable resource of energy.
Keywords: Vortex Induced Vibration, Vortex Shedding, Renewable Energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 375611716 Leveraging Reasoning through Discourse: A Case Study in Secondary Mathematics Classrooms
Authors: Cory A. Bennett
Abstract:
Teaching and learning through the use of discourse support students’ conceptual understanding by attending to key concepts and relationships. One discourse structure used in primary classrooms is number talks wherein students mentally calculate, discuss, and reason about the appropriateness and efficiency of their strategies. In the secondary mathematics classroom, the mathematics understudy does not often lend itself to mental calculations yet learning to reason, and articulate reasoning, is central to learning mathematics. This qualitative case study discusses how one secondary school in the Middle East adapted the number talk protocol for secondary mathematics classrooms. Several challenges in implementing ‘reasoning talks’ became apparent including shifting current discourse protocols and practices to a more student-centric model, accurately recording and probing student thinking, and specifically attending to reasoning rather than computations.Keywords: Discourse, reasoning, secondary mathematics, teacher development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99911715 A Protocol for Applied Consumer Behavior Research in Academia
Abstract:
A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.
Keywords: Marketing, experiential learning, consumer behavior, community partner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18611714 Information Fusion for Identity Verification
Authors: Girija Chetty, Monica Singh
Abstract:
In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..
Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177811713 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.
Keywords: Neural networks, pattern learning, security, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130111712 Perspectives of Financial Reporting Harmonization
Authors: Sorana M. Manoiu, Razvan V. Mustata, Jiří Strouhal, Carmen G. Bonaci, Dumitru Matis, Jiřina Bokšová
Abstract:
In the current context of globalization, accountability has become a key subject of real interest for both, national and international business areas, due to the need for comparability and transparency of the economic situation, so we can speak about the harmonization and convergence of international accounting. The paper presents a qualitative research through content analysis of several reports concerning the roadmap for convergence. First, we develop a conceptual framework for the evolution of standards’ convergence and further we discuss the degree of standards harmonization and convergence between US GAAP and IAS/IFRS as to October 2012. We find that most topics did not follow the expected progress. Furthermore there are still some differences in the long-term project that are in process to be completed and other that were reassessed as a lower priority project.
Keywords: Convergence, harmonization, FASB, IASB, IFRS, US GAAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3570