Search results for: maritime traffic network extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3853

Search results for: maritime traffic network extraction

2323 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
2322 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.

Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
2321 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
2320 European Ecological Network Natura 2000 - Opportunities and Threats

Authors: Adam Niewiadomski

Abstract:

The research objective of the project and article “European Ecological Network Natura 2000 – opportunities and threats” Natura 2000 sites constitute a form of environmental protection, several legal problems are likely to result. Most controversially, certain sites will be subject to two regimes of protection: as national parks and as Natura 2000 sites. This dualism of the legal regulation makes it difficult to perform certain legal obligations related to the regimes envisaged under each form of environmental protection. Which regime and which obligations resulting from the particular form of environmental protection have priority and should prevail? What should be done if these obligations are contradictory? Furthermore, an institutional problem consists in that no public administration authority has the power to resolve legal conflicts concerning the application of a particular regime on a given site. There are also no criteria to decide priority and superiority of one form of environmental protection over the other. Which regulations are more important, those that pertain to national parks or to Natura 2000 sites? In the light of the current regulations, it is impossible to give a decisive answer to these questions. The internal hierarchy of forms of environmental protection has not been determined, and all such forms should be treated equally.

Keywords: Natura 2000, European Ecological Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
2319 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: Anjan Babu G, Sumana G, Rajasekhar M

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
2318 Using Reuse Water for Irrigation Green space of Naein City

Authors: Nasri M., Soleimani A.

Abstract:

Since water resources of desert Naein City are very limited, a approach which saves water resources and meanwhile meets the needs of the greenspace for water is to use city-s sewage wastewater. Proper treatment of Naein-s sewage up to the standards required for green space uses may solve some of the problems of green space development of the city. The present paper closely examines available statistics and information associated with city-s sewage system, and determines complementary stages of sewage treatment facilities of the city. In the present paper, population, per capita water use, and required discharge for various greenspace pieces including different plants are calculated. Moreover, in order to facilitate the application of water resources, a Crude water distribution network apart from drinking water distribution network is designed, and a plan for mixing municipal wells- water with sewage wastewater in proposed mixing tanks is suggested. Hence, following greenspace irrigation reform and complementary plan, per capita greenspace of the city will be increased from current amount of 13.2 square meters to 32 square meters.

Keywords: Sewage Treatment Facility, Wastewater, Greenspace, Distribution Network, Naein City

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
2317 Coverage and Capacity Performance Degradation on a Co-Located Network Involving CDMA2000 and WCDMA @1.9GH

Authors: O. C. Nosiri, V. E. Idigo, C. O. Ohaneme, K. A. Akpado

Abstract:

Coverage and capacity performance in a cellular network determines the system potentials. If the coverage radius is limited, end users suffer poor service quality, if the system capacity reduces, fewer subscribers will be accommodated. This paper investigated the performance effects of the noise rise caused by the spurious emission from a co-located jammer involving downlink frequency of CDMA2000 and uplink frequency of WCDMA operating at 1.9GHz. Measurements were carried out to evaluate the impact on the coverage radius and the system capacity.

Keywords: Capacity, Co-location, Coverage, Noise rise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
2316 Reverse Logistics Information Management Using Ontological Approach

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

Reverse Logistics (RL) Network is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies on the other hand can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper we propose a semantic representation based on hybrid architecture for building the Ontologies in ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems that support reverse logistics processes and product data.

Keywords: Reverse Logistics, information management, heterogeneity, Ontologies, semantic web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2971
2315 Performance Analysis of a WiMax/Wi-Fi System Whilst Streaming a Video Conference Application

Authors: Patrice Obinna Umenne, Marcel O. Odhiambo

Abstract:

WiMAX and Wi-Fi are considered as the promising broadband access solutions for wireless MAN’s and LANs, respectively. In the recent works WiMAX is considered suitable as a backhaul service to connect multiple dispersed Wi-Fi ‘hotspots’. Hence a new integrated WiMAX/Wi-Fi architecture has been proposed in literatures. In this paper the performance of an integrated WiMAX/Wi-Fi network has been investigated by streaming a video conference application. The difference in performance between the two protocols is compared with respect to video conferencing. The Heterogeneous network was simulated in the OPNET simulator.

Keywords: Throughput, delay, delay variance, packet loss, Quality of Service (QoS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653
2314 MinRoot and CMesh: Interconnection Architectures for Network-on-Chip Systems

Authors: Mohammad Ali Jabraeil Jamali, Ahmad Khademzadeh

Abstract:

The success of an electronic system in a System-on- Chip is highly dependent on the efficiency of its interconnection network, which is constructed from routers and channels (the routers move data across the channels between nodes). Since neither classical bus based nor point to point architectures can provide scalable solutions and satisfy the tight power and performance requirements of future applications, the Network-on-Chip (NoC) approach has recently been proposed as a promising solution. Indeed, in contrast to the traditional solutions, the NoC approach can provide large bandwidth with moderate area overhead. The selected topology of the components interconnects plays prime rule in the performance of NoC architecture as well as routing and switching techniques that can be used. In this paper, we present two generic NoC architectures that can be customized to the specific communication needs of an application in order to reduce the area with minimal degradation of the latency of the system. An experimental study is performed to compare these structures with basic NoC topologies represented by 2D mesh, Butterfly-Fat Tree (BFT) and SPIN. It is shown that Cluster mesh (CMesh) and MinRoot schemes achieves significant improvements in network latency and energy consumption with only negligible area overhead and complexity over existing architectures. In fact, in the case of basic NoC topologies, CMesh and MinRoot schemes provides substantial savings in area as well, because they requires fewer routers. The simulation results show that CMesh and MinRoot networks outperforms MESH, BFT and SPIN in main performance metrics.

Keywords: MinRoot, CMesh, NoC, Topology, Performance Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
2313 A Robust Salient Region Extraction Based on Color and Texture Features

Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen

Abstract:

In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.

Keywords: salient regions, color and texture features, image segmentation, saliency metric

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
2312 Intercultural Mediation Training and the Training Process of Common Sense Leaders by the Leadership of Universities Communication and Artistic Campaigns

Authors: Bilgehan Gültekin, Tuba Gültekin

Abstract:

It is quite essential to form dialogue mechanisms and dialogue channels to solve intercultural communication issues. Therefore, every country should develop a intercultural education project which aims to resolve international communication issues. For proper mediation training, the first step is to reach an agreement on the actors to run the project. The strongest mediation mechanisms in the world should be analyzed and initiated within the educational policies. A communication-based mediation model should be developed for international mediation training. Mediators can use their convincing communication skills as a part of this model. At the first, fundamental stages of the mediation training should be specified within the scope of the model. Another important topic at this point is common sence and peace leaders to act as an ombudsman in this process. Especially for solving some social issues and conflicts, common sense leaders acting as an ombudsman would lead to effective communication. In mediation training that is run by universities and non-governmental organizations, another phase is to focus on conducting the meetings. In intercultural mediation training, one of the most critical topics is to conduct the meeting traffic and performing a shuttle diplomacy. Meeting traffic is where the mediator organizes meetings with the parties with initiative powers, in order to contribute to the solution of the issue, and schedule these meetings. In this notice titled “ Intercultural mediation training and the training process of common sense leaders by the leadership of universities communication and artistic campaigns" , communication models and strategies about this topic will be constructed and an intercultural art activities and perspectives will be presented.

Keywords: Intercultural communication, mediation education, common sense leaders, artistic sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
2311 Development of Energy Management System Based on Internet of Things Technique

Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng

Abstract:

The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.

Keywords: Energy management, IoT technique, Sensor, WebAccess

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
2310 A Four Architectures to Locate Mobile Users using Statistical Mapping of WLANs in Indoorand Outdoor Environments-Loids

Authors: K. Krishna Naik, M. N. Giri Prasad

Abstract:

These days wireless local area networks has become very popular, when the initial IEEE802.11 is the standard for providing wireless connectivity to automatic machinery, equipment and stations that require rapid deployment, which may be portable, handheld or which may be mounted on moving vehicles within a local area. IEEE802.11 Wireless local area network is a sharedmedium communication network that transmits information over wireless links for all IEEE802.11 stations in its transmission range to receive. When a user is moving from one location to another, how the other user knows about the required station inside WLAN. For that we designed and implemented a system to locate a mobile user inside the wireless local area network based on RSSI with the help of four specially designed architectures. These architectures are based on statistical or we can say manual configuration of mapping and radio map of indoor and outdoor location with the help of available Sniffer based and cluster based techniques. We found a better location of a mobile user in WLAN. We tested this work in indoor and outdoor environments with different locations with the help of Pamvotis, a simulator for WLAN.

Keywords: AP, RSSI, RPM, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
2309 A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks

Authors: Kentaro Miyoko, Yoshihiko Mori, Yugo Ikeda, Yoshihiro Nishino, Yong-Bok Choi, Hiromi Okada

Abstract:

Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations.

Keywords: Optical burst switching, OBS, flow rate control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
2308 Improve of Evaluation Method for Information Security Levels of CIIP (Critical Information Infrastructure Protection)

Authors: Dong-Young Yoo, Jong-Whoi Shin, Gang Shin Lee, Jae-Il Lee

Abstract:

As the disfunctions of the information society and social development progress, intrusion problems such as malicious replies, spam mail, private information leakage, phishing, and pharming, and side effects such as the spread of unwholesome information and privacy invasion are becoming serious social problems. Illegal access to information is also becoming a problem as the exchange and sharing of information increases on the basis of the extension of the communication network. On the other hand, as the communication network has been constructed as an international, global system, the legal response against invasion and cyber-attack from abroad is facing its limit. In addition, in an environment where the important infrastructures are managed and controlled on the basis of the information communication network, such problems pose a threat to national security. Countermeasures to such threats are developed and implemented on a yearly basis to protect the major infrastructures of information communication. As a part of such measures, we have developed a methodology for assessing the information protection level which can be used to establish the quantitative object setting method required for the improvement of the information protection level.

Keywords: Information Security Evaluation Methodology, Critical Information Infrastructure Protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
2307 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709
2306 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance

Authors: Emad Alenany, M. Adel El-Baz

Abstract:

In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.

Keywords: Queueing network, discrete-event simulation, health applications, SPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
2305 Forecasting Tala-AUD and Tala-USD Exchange Rates with ANN

Authors: Shamsuddin Ahmed, M. G. M. Khan, Biman Prasad, Avlin Prasad

Abstract:

The focus of this paper is to construct daily time series exchange rate forecast models of Samoan Tala/USD and Tala/AUD during the year 2008 to 2012 with neural network The performance of the models was measured by using varies error functions such as Root Square mean error (RSME), Mean absolute error (MAE), and Mean absolute percentage error (MAPE). Our empirical findings suggest that AR (1) model is an effective tool to forecast the Tala/USD and Tala/AUD.

Keywords: Neural Network Forecasting Model, Autoregressive time series, Exchange rate, Tala/AUD, winters model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
2304 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5694
2303 Perceptual Framework for a Modern Left-Turn Collision Warning System

Authors: E. Dabbour, S. M. Easa

Abstract:

Most of the collision warning systems currently available in the automotive market are mainly designed to warn against imminent rear-end and lane-changing collisions. No collision warning system is commercially available to warn against imminent turning collisions at intersections, especially for left-turn collisions when a driver attempts to make a left-turn at either a signalized or non-signalized intersection, conflicting with the path of other approaching vehicles traveling on the opposite-direction traffic stream. One of the major factors that lead to left-turn collisions is the human error and misjudgment of the driver of the turning vehicle when perceiving the speed and acceleration of other vehicles traveling on the opposite-direction traffic stream; therefore, using a properly-designed collision warning system will likely reduce, or even eliminate, this type of collisions by reducing human error. This paper introduces perceptual framework for a proposed collision warning system that can detect imminent left-turn collisions at intersections. The system utilizes a commercially-available detection sensor (either a radar sensor or a laser detector) to detect approaching vehicles traveling on the opposite-direction traffic stream and calculate their speeds and acceleration rates to estimate the time-tocollision and compare that time to the time required for the turning vehicle to clear the intersection. When calculating the time required for the turning vehicle to clear the intersection, consideration is given to the perception-reaction time of the driver of the turning vehicle, which is the time required by the driver to perceive the message given by the warning system and react to it by engaging the throttle. A regression model was developed to estimate perception-reaction time based on age and gender of the driver of the host vehicle. Desired acceleration rate selected by the driver of the turning vehicle, when making the left-turn movement, is another human factor that is considered by the system. Another regression model was developed to estimate the acceleration rate selected by the driver of the turning vehicle based on driver-s age and gender as well as on the location and speed of the nearest approaching vehicle along with the maximum acceleration rate provided by the mechanical characteristics of the turning vehicle. By comparing time-to-collision with the time required for the turning vehicle to clear the intersection, the system displays a message to the driver of the turning vehicle when departure is safe. An application example is provided to illustrate the logic algorithm of the proposed system.

Keywords: Collision warning systems, intelligent transportationsystems, vehicle safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
2302 Cryptanalysis of Yang-Li-Liao’s Simple Three-Party Key Exchange (S-3PAKE) Protocol

Authors: Hae-Soon Ahn, Eun-Jun Yoon

Abstract:

Three-party password authenticated key exchange (3PAKE) protocols are widely deployed on lots of remote user authentication system due to its simplicity and convenience of maintaining a human-memorable password at client side to achieve secure communication within a hostile network. Recently, an improvement of 3PAKE protocol by processing a built-in data attached to other party for identity authentication to individual data was proposed by some researchers. However, this paper points out that the improved 3PAKE protocol is still vulnerable to undetectable on-line dictionary attack and off-line dictionary attack.

Keywords: Three-party key exchange, 3PAKE, Passwordauthenticated key exchange, Network security, Dictionary attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
2301 Spatial Query Localization Method in Limited Reference Point Environment

Authors: Victor Krebss

Abstract:

Task of object localization is one of the major challenges in creating intelligent transportation. Unfortunately, in densely built-up urban areas, localization based on GPS only produces a large error, or simply becomes impossible. New opportunities arise for the localization due to the rapidly emerging concept of a wireless ad-hoc network. Such network, allows estimating potential distance between these objects measuring received signal level and construct a graph of distances in which nodes are the localization objects, and edges - estimates of the distances between pairs of nodes. Due to the known coordinates of individual nodes (anchors), it is possible to determine the location of all (or part) of the remaining nodes of the graph. Moreover, road map, available in digital format can provide localization routines with valuable additional information to narrow node location search. However, despite abundance of well-known algorithms for solving the problem of localization and significant research efforts, there are still many issues that currently are addressed only partially. In this paper, we propose localization approach based on the graph mapped distances on the digital road map data basis. In fact, problem is reduced to distance graph embedding into the graph representing area geo location data. It makes possible to localize objects, in some cases even if only one reference point is available. We propose simple embedding algorithm and sample implementation as spatial queries over sensor network data stored in spatial database, allowing employing effectively spatial indexing, optimized spatial search routines and geometry functions.

Keywords: Intelligent Transportation System, Sensor Network, Localization, Spatial Query, GIS, Graph Embedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
2300 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. de Sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: Artificial Neural Networks, Biodiesel, Iodine Value, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
2299 Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method

Authors: Tarifa S. Almulhim, Ludmil Mikhailov, Dong-Ling Xu

Abstract:

In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.

Keywords: Fuzzy Analytic Network Process (FANP), Fuzzy Non-linear Programming, Fuzzy Preferences Programming Method (FPP), Multiple Criteria Decision-Making (MCDM), Triangular Fuzzy Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
2298 Detection of Black Holes in MANET Using Collaborative Watchdog with Fuzzy Logic

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

Mobile ad hoc network (MANET) is a self-configuring network of mobile node connected without wires. A Fuzzy Logic Based Collaborative watchdog approach is used to reduce the detection time of misbehaved nodes and increase the overall truthfulness. This methodology will increase the secure efficient routing by detecting the Black Holes attacks. The simulation results proved that this method improved the energy, reduced the delay and also improved the overall performance of the detecting black hole attacks in MANET.

Keywords: MANET, collaborative watchdog, fuzzy logic, AODV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
2297 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages

Authors: Hock Chuan, Lim

Abstract:

This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.

Keywords: Blended learning, network science, social learning, social network analysis, study environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
2296 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection

Authors: Taiwo. M. Akinmuyisitan, John Cosmas

Abstract:

This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.

Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314
2295 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351
2294 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics

Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo

Abstract:

A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.

Keywords: Behavioural biometric, Face biometric, Neural network, Physical biometric, Signature biometric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687