Search results for: singular differential equation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1701

Search results for: singular differential equation.

201 Pressure Induced Isenthalpic Oscillations with Condensation and Evaporation in Saturated Two-Phase Fluids

Authors: Joel V. Madison, Hans E. Kimmel

Abstract:

Saturated two-phase fluid flows are often subject to pressure induced oscillations. Due to compressibility the vapor bubbles act as a spring with an asymmetric non-linear characteristic. The volume of the vapor bubbles increases or decreases differently if the pressure fluctuations are compressing or expanding; consequently, compressing pressure fluctuations in a two-phase pipe flow cause less displacement in the direction of the pipe flow than expanding pressure fluctuations. The displacement depends on the ratio of liquid to vapor, the ratio of pressure fluctuations over average pressure and on the exciting frequency of the pressure fluctuations. In addition, pressure fluctuations in saturated vapor bubbles cause condensation and evaporation within the bubbles and change periodically the ratio between liquid to vapor, and influence the dynamical parameters for the oscillation. The oscillations are conforming to an isenthalpic process at constant enthalpy with no heat transfer and no exchange of work. The paper describes the governing non-linear equation for twophase fluid oscillations with condensation and evaporation, and presents steady state approximate solutions for free and for pressure induced oscillations. Resonance criteria and stability are discussed.

Keywords: condensation, evaporation, non-linear oscillations, pressure induced, two-phase flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
200 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract:

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Keywords: Identification, Hammerstein-Wiener, optimization, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
199 The Influence of Transformational Leadership on Knowledge Sharing in Iraq’s Public and Private Higher Education: A Comparison Study

Authors: Sawsan J. Al-Husseini

Abstract:

Transformational leadership (TL) has been found to have an important influence on knowledge and knowledge management (KM). It can contribute to organizational learning, employees’ creativity, encourage followers to participate in educational programs and develop the skills needed to achieve exceptional performance. This research sought to examine the impact of TL on knowledge donating and collecting and the differences between these impacts in public and private higher education institutes (HEIs) in Iraq. A mixed method approach was taken and 580 valid responses were collected to test the causal relationships between the factors, then 12 interviews were conducted with the leaders of HEIs to give more insight of the findings from quantitative stage. Employing structural equation modelling with AMOS v.24, the research found that TL would be ideal in an educational context, promoting knowledge sharing activities in both sectors. The interviews revealed differences between public and private HEIs in terms of the effects relationships. Guidelines are developed for academics as well as leaders and provided evidence to support the use of TL to encourage knowledge sharing activities within higher education in developing countries particularly Iraq.

Keywords: Transformational leadership, knowledge sharing, higher education, multi-groups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
198 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang

Abstract:

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Keywords: Unsteady flow, axial turbine, wake, aerodynamic force, loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
197 Fatigue Analysis of Crack Growing Rate and Stress Intensity Factor for Stress Corrosion Cracking in a Pipeline System

Authors: A. R. Shahani, E. Mahdavi, M. Amidpour

Abstract:

Environment-assisted cracking (EAC) is one of the most serious causes of structural failure over a broad range of industrial applications including offshore structures. In EAC condition there is not a definite relation such as Paris equation in Linear Elastic Fracture Mechanics (LEFM). According to studying and searching a lot what the researchers said either a material has contact with hydrogen or any other corrosive environment, phenomenon of electrical and chemical reactions of material with its environment will be happened. In the literature, there are many different works to consider fatigue crack growing and solve it but they are experimental works. Thus, in this paper, authors have an aim to evaluate mathematically the pervious works in LEFM. Obviously, if an environment is more sour and corrosive, the changes of stress intensity factor is more and the calculation of stress intensity factor is difficult. A mathematical relation to deal with the stress intensity factor during the diffusion of sour environment especially hydrogen in a marine pipeline is presented. By using this relation having and some experimental relation an analytical formulation will be presented which enables the fatigue crack growth and critical crack length under cyclic loading to be predicted. In addition, we can calculate KSCC and stress intensity factor in the pipeline caused by EAC.

Keywords: Embrittlement, Fracture mechanics, Hydrogen diffusion, Stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
196 Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Cd (II) and Pb (II) from Aqueous Solution Using a Spore Forming Bacillus Isolated from Wastewater of a Leather Factory

Authors: Sh. Kianfar, A. Moheb, H. Ghaforian

Abstract:

The equilibrium, thermodynamics and kinetics of the biosorption of Cd (II) and Pb(II) by a Spore Forming Bacillus (MGL 75) were investigated at different experimental conditions. The Langmuir and Freundlich, and Dubinin-Radushkevich (D-R) equilibrium adsorption models were applied to describe the biosorption of the metal ions by MGL 75 biomass. The Langmuir model fitted the equilibrium data better than the other models. Maximum adsorption capacities q max for lead (II) and cadmium (II) were found equal to 158.73mg/g and 91.74 mg/g by Langmuir model. The values of the mean free energy determined with the D-R equation showed that adsorption process is a physiosorption process. The thermodynamic parameters Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes were also calculated, and the values indicated that the biosorption process was exothermic and spontaneous. Experiment data were also used to study biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients were calculated and discussed. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.

Keywords: biosorption, kinetics, Metal ion removal, thermodynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
195 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations

Authors: T. H. Young, S. J. Huang, Y. S. Chiu

Abstract:

This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.

Keywords: Axially moving viscoelastic plate, in-plane periodic excitation, non-uniformly distributed edge tension, dynamic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
194 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

Authors: C. Lodato, S. Lopes

Abstract:

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
193 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3047
192 Action Potential Propagation in Inhomogeneous 2D Mouse Ventricular Tissue Model

Authors: Mouse, cardiac myocytes, computer simulation, action potential.

Abstract:

Heterogeneous repolarization causes dispersion of the T-wave and has been linked to arrhythmogenesis. Such heterogeneities appear due to differential expression of ionic currents in different regions of the heart, both in healthy and diseased animals and humans. Mice are important animals for the study of heart diseases because of the ability to create transgenic animals. We used our previously reported model of mouse ventricular myocytes to develop 2D mouse ventricular tissue model consisting of 14,000 cells (apical or septal ventricular myocytes) and to study the stability of action potential propagation and Ca2+ dynamics. The 2D tissue model was implemented as a FORTRAN program code for highperformance multiprocessor computers that runs on 36 processors. Our tissue model is able to simulate heterogeneities not only in action potential repolarization, but also heterogeneities in intracellular Ca2+ transients. The multicellular model reproduced experimentally observed velocities of action potential propagation and demonstrated the importance of incorporation of realistic Ca2+ dynamics for action potential propagation. The simulations show that relatively sharp gradients of repolarization are predicted to exist in 2D mouse tissue models, and they are primarily determined by the cellular properties of ventricular myocytes. Abrupt local gradients of channel expression can cause alternans at longer pacing basic cycle lengths than gradual changes, and development of alternans depends on the site of stimulation.

Keywords: Mouse, cardiac myocytes, computer simulation, action potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
191 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: Carbon capture and storage, water solubility, equation of states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2921
190 Estimation of Forest Fire Emission in Thailand by Using Remote Sensing Information

Authors: A. Junpen, S. Garivait, S. Bonnet, A. Pongpullponsak

Abstract:

The forest fires in Thailand are annual occurrence which is the cause of air pollutions. This study intended to estimate the emission from forest fire during 2005-2009 using MODerateresolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites, experimental data, and statistical data. The forest fire emission is estimated using equation established by Seiler and Crutzen in 1982. The spatial and temporal variation of forest fire emission is analyzed and displayed in the form of grid density map. From the satellite data analysis suggested between 2005 and 2009, the number of fire hotspots occurred 86,877 fire hotspots with a significant highest (more than 80% of fire hotspots) in the deciduous forest. The peak period of the forest fire is in January to May. The estimation on the emissions from forest fires during 2005 to 2009 indicated that the amount of CO, CO2, CH4, and N2O was about 3,133,845 tons, 47,610.337 tons, 204,905 tons, and 6,027 tons, respectively, or about 6,171,264 tons of CO2eq. They also emitted 256,132 tons of PM10. The year 2007 was found to be the year when the emissions were the largest. Annually, March is the period that has the maximum amount of forest fire emissions. The areas with high density of forest fire emission were the forests situated in the northern, the western, and the upper northeastern parts of the country.

Keywords: Emissions, Forest fire, Remote sensing information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
189 A Mathematical Modelling to Predict Rhamnolipid Production by Pseudomonas aeruginosa under Nitrogen Limiting Fed-Batch Fermentation

Authors: Seyed Ali Jafari, Mohammad Ghomi Avili, Emad Benhelal

Abstract:

In this study, a mathematical model was proposed and the accuracy of this model was assessed to predict the growth of Pseudomonas aeruginosa and rhamnolipid production under nitrogen limiting (sodium nitrate) fed-batch fermentation. All of the parameters used in this model were achieved individually without using any data from the literature. The overall growth kinetic of the strain was evaluated using a dual-parallel substrate Monod equation which was described by several batch experimental data. Fed-batch data under different glycerol (as the sole carbon source, C/N=10) concentrations and feed flow rates were used to describe the proposed fed-batch model and other parameters. In order to verify the accuracy of the proposed model several verification experiments were performed in a vast range of initial glycerol concentrations. While the results showed an acceptable prediction for rhamnolipid production (less than 10% error), in case of biomass prediction the errors were less than 23%. It was also found that the rhamnolipid production by P. aeruginosa was more sensitive at low glycerol concentrations. Based on the findings of this work, it was concluded that the proposed model could effectively be employed for rhamnolipid production by this strain under fed-batch fermentation on up to 80 g l- 1 glycerol.

Keywords: Fed-batch culture, glycerol, kinetic parameters, modelling, Pseudomonas aeruginosa, rhamnolipid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
188 Role of Social Capital on Consumer Attitudes, Peer Influence and Behavioral Intentions: A Social Media Perspective

Authors: Qazi Mohammed Ahmed, Osman Sadiq Paracha, Iftikhar Hussain

Abstract:

The study aims to explore the unaddressed relationship between social capital and consumers’ underlying behavioral intentions. The study postulates that this association is mediated by the role of attitudes and peer influence. The research attains evidence from a usable sample of 673 responses. The majority consists of the young and energetic social media users of Pakistan that utilize virtual communities as a way of life. A variance based structural equation modeling has been applied through SmartPLS 3. The results reveal that social capital exerts a statistically supportive association with both attitudes and peer influence. Contrastingly, this predictor variable shows an insignificant linkage with behavioral intentions but this relationship is fully mediated by consumer attitudes and peer influence. The paper enhances marketing literature with respect to an unexplored society of Pakistan. It also provides a lens for the contemporary advertisers, in terms of supporting their social media campaigns with affiliative and cohesive elements. The study also identifies a series of predictor variables that could further be tested with attitudes, subjective norms and behavioral responses.

Keywords: Behavioral intentions, consumer attitudes, peer influence, social capital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605
187 Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field

Authors: Zone-Ching Lin, Meng-Hua Lin, Ying-Chih Hsu

Abstract:

This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.

Keywords: Quasi-steady molecular statics, Nanoscale orthogonal cutting, Finite difference, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
186 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate

Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh

Abstract:

Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.

Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
185 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor and sensor layout shape factor. Based on the properties of electrons, phonons, grain boundaries and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of Boltzmann transport equation. The model includes the effects of grain structure, grain boundary trap properties and doping concentration. The layer structure factor of sensor is analyzed with respect to infrared absorption coefficient. The effect of layout design is characterized with the shape factor, which is calculated for different sensor designs. Double layer polycrystalline silicon thermopile infrared sensors on suspended support membrane have been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed with measurement results.

Keywords: Polycrystalline silicon film, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241
184 Magnetic Fluid Based Squeeze Film in Rough Rotating Curved Porous Annular Plates: Deformation Effect

Authors: M. E. Shimpi, G. M. Deheri

Abstract:

This article aims to investigate the performance of a magnetic fluid based squeeze film between rotating transversely rough curved porous annular plates incorporating the effect of elastic deformation. The associated stochastically averaged Reynolds type equation is solved to obtain the pressure distribution leading to the calculation of the load carrying capacity. The results suggest that the transverse roughness of the bearing surfaces affects the performance adversely although the bearing systems register a relatively improved performance due to the magnetization. The deformation causes reduced the load carrying capacity while the curvature parameters tend to nominally increase the load carrying capacity. Besides, the adverse effect of porosity, deformation and standard deviation can be minimized to some extent by the positive effect of the magnetization and the curvature parameters in the case of negatively skewed roughness by suitably choosing the rotational inertia and the aspect ratio, which becomes significant when negative variance occurs.

Keywords: Annular plates curved rough surface, deformation, load carrying capacity, rotational inertia, magnetic fluid, squeeze film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
183 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: Agro-industrial waste, biomass, briquettes, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
182 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
181 Investigating the Individual Difference Antecedents of Perceived Enjoyment in the Acceptance of Blogging

Authors: Yi-Shun Wang, Hsin-Hui Lin, Yi-Wen Liao

Abstract:

With the proliferation of Weblogs (blogs) use in educational contexts, gaining a better understanding of why students are willing to utilize blog systems has become an important topic for practitioners and academics. While perceived enjoyment has been found to have a significant influence on behavioral intentions to use blogs or hedonic systems, few studies have investigated the antecedents of perceived enjoyment in the acceptance of blogging. The main purpose of the present study is to explore the individual difference antecedents of perceived enjoyment and examine how they influence behavioral intention to blog through the mediation of perceived enjoyment. Based on the previous literature, the Big Five personality traits (i.e., extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience), as well as computer self-efficacy and personal innovation in information technology (PIIT), are hypothesized as potential antecedents of perceived enjoyment in the acceptance of blogging. Data collected from 358 respondents in Taiwan are tested against the research model using the structural equation modeling approach. The results indicate that extraversion, agreeableness, conscientiousness, and PIIT have a significant influence on perceived enjoyment, which in turn significantly influences the behavioral intention to blog. These findings lead to several important implications for future research.

Keywords: Individual difference, Big Five personality traits, perceived enjoyment, blogging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
180 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
179 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad

Abstract:

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579
178 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia

Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan

Abstract:

Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.

Keywords: Menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
177 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
176 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
175 A Study on Flammability of Bio Oil Combustible Vapour Mixtures

Authors: Mohanad El-Harbawi, Nurul Amirah Hanim Bt. Umar, Norizan Ali, Yoshimitsu Uemura

Abstract:

Study of fire and explosion is very important mainly in oil and gas industries due to several accidents which have been reported in the past and present. In this work, we have investigated the flammability of bio oil vapour mixtures. This mixture may contribute to fire during the storage and transportation process. Bio oil sample derived from Palm Kernell shell was analysed using Gas Chromatography Mass Spectrometry (GC-MS) to examine the composition of the sample. Mole fractions of 12 selected components in the liquid phase were obtained from the GC-FID data and used to calculate mole fractions of components in the gas phase via modified Raoult-s law. Lower Flammability Limits (LFLs) and Upper Flammability Limits (UFLs) for individual components were obtained from published literature. However, stoichiometric concentration method was used to calculate the flammability limits of some components which their flammability limit values are not available in the literature. The LFL and UFL values for the mixture were calculated using the Le Chatelier equation. The LFLmix and UFLmix values were used to construct a flammability diagram and subsequently used to determine the flammability of the mixture. The findings of this study can be used to propose suitable inherently safer method to prevent the flammable mixture from occurring and to minimizing the loss of properties, business, and life due to fire accidents in bio oil productions.

Keywords: Gas chromatography, compositions, lower and upper flammability limits (LFL & UFL), flammability diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3438
174 Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac O. Asante, Yushi Jiang, Hailin Tao

Abstract:

Livestreaming marketing, the new electronic commerce element, has become an optional marketing channel following the COVID-19 pandemic, and many sellers are leveraging the features presented by livestreaming to increase sales. This study was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during livestreaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study presents a way of measuring interactions in livestreaming commerce and proposes a way to manually gather data on consumer behaviors in livestreaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: Livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171
173 Removal of CO2 and H2S using Aqueous Alkanolamine Solusions

Authors: Zare Aliabad, H., Mirzaei, S.

Abstract:

This work presents a theoretical investigation of the simultaneous absorption of CO2 and H2S into aqueous solutions of MDEA and DEA. In this process the acid components react with the basic alkanolamine solution via an exothermic, reversible reaction in a gas/liquid absorber. The use of amine solvents for gas sweetening has been investigated using process simulation programs called HYSYS and ASPEN. We use Electrolyte NRTL and Amine Package and Amines (experimental) equation of state. The effects of temperature and circulation rate and amine concentration and packed column and murphree efficiency on the rate of absorption were studied. When lean amine flow and concentration increase, CO2 and H2S absorption increase too. With the improvement of inlet amine temperature in absorber, CO2 and H2S penetrate to upper stages of absorber and absorption of acid gases in absorber decreases. The CO2 concentration in the clean gas can be greatly influenced by the packing height, whereas for the H2S concentration in the clean gas the packing height plays a minor role. HYSYS software can not estimate murphree efficiency correctly and it applies the same contributions in all diagrams for HYSYS software. By improvement in murphree efficiency, maximum temperature of absorber decrease and the location of reaction transfer to the stages of bottoms absorber and the absorption of acid gases increase.

Keywords: Absorber, DEA, MDEA, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17323
172 The Correlation of Total Phenol Content with Free Radicals Scavenging Activity and Effect of Ethanol Concentration in Extraction Process of Mangosteen Rind (Garcinia mangostana)

Authors: Ririn Lestari Sri Rahayu, Mustofa Ahda

Abstract:

The use of synthetic antioxidants often causes a negative effect on health and increases the incidence of carcinogenesis. Development of the natural antioxidants should be investigated. However, natural antioxidants have a low toxicity and are safe for human consumption. Ethanol extract of mangosteen rind (Garcinia mangostana) contains natural antioxidant compounds that have various pharmacological activities. Antioxidants from the ethanol extract of mangosteen rind have free radicals scavenging activities. The scavenging activity of ethanol extract of mangosteen rind was determined by DPPH method. The phenolic compound from the ethanol extract of mangosteen rind is determined with Folin-Ciocalteu method. The results showed that the absolute ethanol extract of mangosteen rind has IC50 of 40.072 ug/mL. The correlation of total phenols content with free radical scavenging activity has an equation y: 5.207x + 205.51 and determination value (R2) of 0.9329. Total phenols content from the ethanol extract of mangosteen rind has a good correlation with free radicals scavenging activity of DPPH.

Keywords: Antioxidant, Garcinia mangostana, inhibition concentration 50%, total phenolic compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303