Search results for: gas solid flow
1380 Interfacing and Replication of Electronic Machinery Using MATLAB / SIMULINK
Authors: Abdulatif Abdusalam, Mohamed Shaban
Abstract:
This paper introduces Interfacing and Replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. The power issue rectifier model includes solid state device models. The tools provide clear-cut structures and mock-up of complex energy systems, connecting with power electronic machines.
Keywords: Power electronics, Machine, Matlab/Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30491379 Experimental and Numerical Study of A/C Outletsand Its Impact on Room Airflow Characteristics
Authors: Mohammed A. Aziz, Ibrahim A. M. Gad, El Shahat F. A. Mohammed, Ramy H. Mohammed
Abstract:
This paper investigates experimental and numerical study of the airflow characteristics for vortex, round and square ceiling diffusers and its effect on the thermal comfort in a ventilated room. Three different thermal comfort criteria namely; Mean Age of the Air (MAA), ventilation effectiveness (E), and Effective Draft Temperature (EDT) have been used to predict the thermal comfort zone inside the room. In experimental work, a sub-scale room is set-up to measure the temperature field in the room. In numerical analysis, unstructured grids have been used to discretize the numerical domain. Conservation equations are solved using FLUENT commercial flow solver. The code is validated by comparing the numerical results obtained from three different turbulence models with the available experimental data. The comparison between the various numerical models shows that the standard k-ε turbulence model can be used to simulate these cases successfully. After validation of the code, effect of supply air velocity on the flow and thermal field could be investigated and hence the thermal comfort. The results show that the pressure coefficient created by the square diffuser is 1.5 times greater than that created by the vortex diffuser. The velocity decay coefficient is nearly the same for square and round diffusers and is 2.6 times greater than that for the vortex diffuser.
Keywords: Ceiling diffuser, Thermal Comfort, MAA, EDT, Fluent, Turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21431378 Seamless Flow of Voluminous Data in High Speed Network without Congestion Using Feedback Mechanism
Abstract:
Continuously growing needs for Internet applications that transmit massive amount of data have led to the emergence of high speed network. Data transfer must take place without any congestion and hence feedback parameters must be transferred from the receiver end to the sender end so as to restrict the sending rate in order to avoid congestion. Even though TCP tries to avoid congestion by restricting the sending rate and window size, it never announces the sender about the capacity of the data to be sent and also it reduces the window size by half at the time of congestion therefore resulting in the decrease of throughput, low utilization of the bandwidth and maximum delay. In this paper, XCP protocol is used and feedback parameters are calculated based on arrival rate, service rate, traffic rate and queue size and hence the receiver informs the sender about the throughput, capacity of the data to be sent and window size adjustment, resulting in no drastic decrease in window size, better increase in sending rate because of which there is a continuous flow of data without congestion. Therefore as a result of this, there is a maximum increase in throughput, high utilization of the bandwidth and minimum delay. The result of the proposed work is presented as a graph based on throughput, delay and window size. Thus in this paper, XCP protocol is well illustrated and the various parameters are thoroughly analyzed and adequately presented.Keywords: Bandwidth-Delay Product, Congestion Control, Congestion Window, TCP/IP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14881377 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal
Abstract:
Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.
Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13061376 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.
Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8011375 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture
Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju
Abstract:
Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nanocutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.
Keywords: Economic analysis, Machining, Minimum Quantity lubrication, nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22791374 Numerical Simulation of Flow Past an Infinite Row of Equispaced Square Cylinders Using the Multi- Relaxation-Time Lattice Boltzmann Method
Authors: S. Ul. Islam, H. Rahman, W. S. Abbasi, N. Rathore
Abstract:
In this research numerical simulations are performed, using the multi-relaxation-time lattice Boltzmann method, in the range 3 ≤ β = w[d] ≤ 30 at Re = 100, 200 and 300, where β the blockage ratio, w is the equispaced distance between centers of cylinders, d is the diameter of the cylinder and Re is the Reynolds number, respectively. Special attention is paid to the effect of the equispaced distance between centers of cylinders. Visualization of the vorticity contour visualization are presented for some simulation showing the flow dynamics and patterns for blockage effect. Results show that the drag and mean drag coefficients, and Strouhal number, in general, decrease with the increase of β for fixed Re. It is found that the decreasing rate of drag and mean drag coefficients and Strouhal number is more distinct in the range 3 ≤ β ≤ 15. We found that when β > 15, the blockage effect almost diminishes. Our results further indicate that the drag and mean drag coefficients, peak value of the lift coefficient, root-mean-square value of the lift and drag coefficients and the ratio between lift and drag coefficients decrease with the increase of Re. The results indicate that symmetry boundary condition have more blockage effect as compared to periodic boundary condition.Keywords: Blockage ratio, Multi-relaxation-time lattice Boltzmann method, Square cylinder, Vortex formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20591373 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect
Authors: Dong-Hyun Kim, Yoo-Han Kim
Abstract:
In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29201372 Mass Transfer Modeling in a Packed Bed of Palm Kernels under Supercritical Conditions
Authors: I. Norhuda, A. K. Mohd Omar
Abstract:
Studies on gas solid mass transfer using Supercritical fluid CO2 (SC-CO2) in a packed bed of palm kernels was investigated at operating conditions of temperature 50 °C and 70 °C and pressures ranges from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa. The development of mass transfer models requires knowledge of three properties: the diffusion coefficient of the solute, the viscosity and density of the Supercritical fluids (SCF). Matematical model with respect to the dimensionless number of Sherwood (Sh), Schmidt (Sc) and Reynolds (Re) was developed. It was found that the model developed was found to be in good agreement with the experimental data within the system studied.
Keywords: Mass Transfer, Palm Kernel, Supercritical fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171371 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings
Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov
Abstract:
At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13221370 Comparative Analysis of Ranunculus muricatus and Typha latifolia as Wetland Plants Applied for Domestic Wastewater Treatment in a Mesocosm Scale Study
Authors: S. Aziz, M. Ali, S. Asghar, S. Ahmed
Abstract:
Comparing other methods of waste water treatment, constructed wetlands are one of the most fascinating practices because being a natural process they are eco-friendly have low construction and maintenance cost and have considerable capability of wastewater treatment. The current research was focused mainly on comparison of Ranunculus muricatus and Typha latifolia as wetland plants for domestic wastewater treatment by designing and constructing efficient pilot scale horizontal subsurface flow mesocosms. Parameters like chemical oxygen demand, biological oxygen demand, phosphates, sulphates, nitrites, nitrates, and pathogenic indicator microbes were studied continuously with successive treatments. Treatment efficiency of the system increases with passage of time and with increase in temperature. Efficiency of T. latifolia planted setups in open environment was fairly good for parameters like COD and BOD5 which was showing reduction up to 82.5% for COD and 82.6% for BOD5 while DO was increased up to 125%. Efficiency of R. muricatus vegetated setup was also good but lowers than that of T. latifolia planted showing 80.95% removal of COD and BOD5. Ranunculus muricatus was found effective in reducing bacterial count in wastewater. Both macrophytes were found promising in wastewater treatment.
Keywords: Biological oxygen demand, chemical oxygen demand, horizontal subsurface flow, Total suspended solids, Wetland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26371369 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound
Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner
Abstract:
Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.Keywords: Filler, flowability, jute fiber, nonwoven, sheet molding compound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671368 Numerical Studies on Thrust Vectoring Using Shock Induced Supersonic Secondary Jet
Authors: Jerin John, Subanesh Shyam R., Aravind Kumar T. R., Naveen N., Vignesh R., Krishna Ganesh B, Sanal Kumar V. R.
Abstract:
Numerical studies have been carried out using a validated two-dimensional RNG k-epsilon turbulence model for the design optimization of a thrust vector control system using shock induced supersonic secondary jet. Parametric analytical studies have been carried out with various secondary jets at different divergent locations, jet interaction angles, jet pressures. The results from the parametric studies of the case on hand reveal that the primary nozzle with a small divergence angle, downstream injections with a distance of 2.5 times the primary nozzle throat diameter from the primary nozzle throat location warrant higher efficiency over a certain range of jet pressures and jet angles. We observed that the supersonic secondary jet opposing the core flow with jets interaction angle of 40o to the axis far downstream of the nozzle throat facilitates better thrust vectoring than the secondary jet with same direction as that of core flow with various interaction angles. We concluded that fixing of the supersonic secondary jet nozzle pointing towards the throat direction with suitable angle at a distance 2 to 4 times of the primary nozzle throat diameter, as the case may be, from the primary nozzle throat location could facilitate better thrust vectoring for the supersonic aerospace vehicles.
Keywords: Fluidic thrust vectoring, rocket steering, supersonic secondary jet location, TVC in spacecraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36571367 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive
Authors: K. Jayakumar, S. Thangavel
Abstract:
In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10191366 Gassing Tendency of Natural Ester Based Transformer Oils: Low Ethane Generation in Stray Gassing Behavior
Authors: Banti Sidhiwala, T. C. S. M. Gupta
Abstract:
Mineral oils of naphthenic and paraffinic type are in use as insulating liquids in the transformer applications to protect solid insulation from moisture and ensures effective heat transfer/cooling. The performance of these type of oils have been proven in the field over many decades and the condition monitoring and diagnosis of transformer performance have been successfully monitored through oil properties and dissolved gas analysis methods successfully. Different types of gases can represent various types of faults that may occur due to faulty components or unfavorable operating conditions. A large amount of database has been generated in the industry for dissolved gas analysis in mineral oil-based transformer oils, and various models have been developed to predict faults and analyze data. Additionally, oil specifications and standards have been updated to include stray gassing limits that cover low-temperature faults. This modification has become an effective preventative maintenance tool that can help greatly in understanding the reasons for breakdowns of electrical insulating materials and related components. Natural esters have seen a rise in popularity in recent years due to their "green" credentials. Some of its benefits include biodegradability, a higher fire point, improvement in load capability of transformer and improved solid insulation life than mineral oils. However, the stray gassing test shows that hydrogen and hydrocarbons like methane (CH4) and ethane (C2H6) show very high values which are much higher than the limits of mineral oil standards. Though the standards for these types of esters are yet to be evolved, the higher values of hydrocarbon gases that are available in the market is of concern which might be interpreted as a fault in transformer operation. The current paper focuses on developing a class of natural esters with low levels of stray gassing by American Society for Testing and Materials (ASTM) and International Electric Council (IEC) methods much lower values compared to the natural ester-based products reported in the literature. The experimental results of products are explained.
Keywords: Biodegradability, fire point, dissolved gas analysis, natural ester, stray gassing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941365 Low Energy Technology for Leachate Valorisation
Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo
Abstract:
Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.
Keywords: Forward osmosis, landfills, leachate valorization, solar evaporation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9551364 JEWEL: A Cosmological Model Due to the Geometrical Displacement of Galactic Object Like Black, White and Worm Holes
Authors: Francesco Pia
Abstract:
Stellar objects such as black, white and worm holes can be the subject of speculative reasoning if represented in a simplified and geometric form in order to be able to move them; and the cosmological model is one of the most important contents in relation to speculations that can then open the way to other aspects that are not strictly speculative but practical, precisely in the Universe represented by us. In this work, thanks to the hypothesis of a very large number of black, white and worm holes present in our Universe, we imagine that they can be moved; it was therefore thought to align them on a plane and following a redistribution, and the boundaries of this plane were ideally joined, giving rise to a sphere that has the stellar objects examined radially distributed. Thanks to geometrical displacements of these stellar objects that do not make each one of them lose their functionality in the region in which they are located, at the end of the speculative process it is possible to highlight a spherical layer that allows a flow from the outside and inside this spherical shell allowing to relate to other external and internal spherical layers; this aspect that seems useful to describe the universe we live in, for example inside one of the spherical shells just described. The name "Jewel" was chosen because, imagining the speculative process present in this work at the end of steps, the cosmological model tends to be "luminous". This cosmological model includes, for each internal part of a generic layer, different and numerous moments of our universe thanks to an eternal flow inward. There are many aspects to explore, one of these is the connection between the outermost and the inside of the spherical layers.
Keywords: Black hole, cosmological model, cosmology, white hole.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5711363 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs Oxidation
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Ts. Petrova, Tatyana T. Tabakova
Abstract:
This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.Keywords: Copper-manganese-chromium oxide catalysts, CO, deep oxidation, volatile organic compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361362 ROSA/LSTF Test on Pressurized Water Reactor Steam Generator Tube Rupture Accident Induced by Main Steam Line Break with Recovery Actions
Authors: Takeshi Takeda
Abstract:
An experiment was performed for the OECD/NEA ROSA-2 Project employing the ROSA/LSTF (rig of safety assessment/large-scale test facility), which simulated a steam generator tube rupture (SGTR) accident induced by main steam line break (MSLB) with operator recovery actions in a pressurized water reactor (PWR). The primary pressure decreased to the pressure level nearly-equal to the intact steam generator (SG) secondary-side pressure even with coolant injection from the high-pressure injection (HPI) system of emergency core cooling system (ECCS) into cold legs. Multi-dimensional coolant behavior appeared such as thermal stratification in both hot and cold legs in intact loop. The RELAP5/MOD3.3 code indicated the insufficient predictions of the primary pressure, the SGTR break flow rate, and the HPI flow rate, and failed to predict the fluid temperatures in the intact loop hot and cold legs. Results obtained from the comparison among three LSTF SGTR-related tests clarified that the thermal stratification occurs in the horizontal legs by different mechanisms.
Keywords: LSTF, SGTR, thermal stratification, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7881361 Microencapsulation of Ascorbic Acid by Spray Drying: Influence of Process Conditions
Authors: Addion Nizori, Lan T.T. Bui, Darryl M. Small
Abstract:
Ascorbic acid (AA), commonly known as vitamin C, is essential for normal functioning of the body and maintenance of metabolic integrity. Among its various roles are as an antioxidant, a cofactor in collagen formation and other reactions, as well as reducing physical stress and maintenance of the immune system. Recent collaborative research between the Australian Defence Science and Technology Organisation (DSTO) in Scottsdale, Tasmania and RMIT University has sought to overcome the problems arising from the inherent instability of ascorbic acid during processing and storage of foods. The recent work has demonstrated the potential of microencapsulation by spray drying as a means to enhance retention. The purpose of this current study has been focused upon the influence of spray drying conditions on the properties of encapsulated ascorbic acid. The process was carried out according to a central composite design. Independent variables were: inlet temperature (80-120° C) and feed flow rate (7-14 mL/minute). Process yield, ascorbic acid loss, moisture content, water activity and particle size distribution were analysed as responses. The results have demonstrated the potential of microencapsulation by spray drying as a means to enhance retention. Vitamin retention, moisture content, water activity and process yield were influenced positively by inlet air temperature and negatively by feed flow rate.
Keywords: Microencapsulation, spray drying, ascorbic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44581360 Clarification of Synthetic Juice through Spiral Wound Ultrafiltration Module at Turbulent Flow Region and Cleaning Study
Authors: Vijay Singh, Chandan Das
Abstract:
Synthetic juice clarification was done through spiral wound ultrafiltration (UF) membrane module. Synthetic juice was clarified at two different operating conditions, such as, with and without permeates recycle at turbulent flow regime. The performance of spiral wound ultrafiltration membrane was analyzed during clarification of synthetic juice. Synthetic juice was the mixture of deionized water, sucrose and pectin molecule. The operating conditions are: feed flowrate of 10 lpm, pressure drop of 413.7 kPa and Reynolds no of 5000. Permeate sample was analyzed in terms of volume reduction factor (VRF), viscosity (Pa.s), ⁰Brix, TDS (mg/l), electrical conductivity (μS) and turbidity (NTU). It was observe that the permeate flux declined with operating time for both conditions of with and without permeate recycle due to increase of concentration polarization and increase of gel layer on membrane surface. For without permeate recycle, the membrane fouling rate was faster compared to with permeate recycle. For without permeate recycle, the VRF rose up to 5 and for with recycle permeate the VRF is 1.9. The VRF is higher due to adsorption of solute (pectin) molecule on membrane surface and resulting permeateflux declined with VRF. With permeate recycle, quality was within acceptable limit. Fouled membrane was cleaned by applying different processes (e.g., deionized water, SDS and EDTA solution). Membrane cleaning was analyzed in terms of permeability recovery.Keywords: Synthetic juice, Spiral wound, ultrafiltration, Reynolds No, Volume reduction factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561359 Manufacture of Electroless Nickel/YSZ Composite Coatings
Authors: N. Bahiyah Baba, W. Waugh, A.M. Davidson
Abstract:
The paper discusses optimising work on a method of processing ceramic / metal composite coatings for various applications and is based on preliminary work on processing anodes for solid oxide fuel cells (SOFCs). The composite coating is manufactured by the electroless co-deposition of nickel and yttria stabilised zirconia (YSZ) simultaneously on to a ceramic substrate. The effect on coating characteristics of substrate surface treatments and electroless nickel bath parameters such as pH and agitation methods are also investigated. Characterisation of the resulting deposit by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA) is also discussed.
Keywords: Electroless deposition, nickel, YSZ, composite
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25691358 Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of “n“ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran
Authors: M.R.Mansoujian, A.Rohani, N.Hedayat , M.Qamari, M. Osroosh
Abstract:
Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.Keywords: Sediment transport, Manning coefficient, Eastern Intake, SHARC, Dez River.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16811357 Cogeneration Unit for Small Stove
Authors: Michal Spilacek, Marian Brazdil, Otakar Stelcl, Jiri Pospisil
Abstract:
This paper shows an experimental testing of a small unit for combustion of solid fuels, such as charcoal and wood logs, that can provide electricity. One of the concepts is that the unit does not require qualified personnel for its operation. The unit itself is composed of two main parts. The design requires a heat producing stove and electricity producing thermoelectric generator. After the construction the unit was tested and the results show that the emission release is within the legislative requirements for emission production and environmental protection. That qualifies such unit for indoor application.
Keywords: Micro-cogeneration, thermoelectric generator, biomass combustion, wood stove.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24411356 Friction Stir Welding Process: A Green Technology
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
Friction Stir Welding (FSW) is a solid state welding process invented and patented by The Welding Institute (TWI) in the United Kingdom in 1991 for butt and lap welding of metals and plastics. This paper highlights the benefits of friction stir welding process as an energy efficient and a green technology process in the field of welding. Compared to the other conventional welding processes, its benefits, typical applications and its use in joining similar and dissimilar materials are also presented.Keywords: Dissimilar materials, Friction Stir Welding, Green technology, similar materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49151355 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles
Authors: Hee-Chang Lim
Abstract:
The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.
Keywords: Rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9111354 Numerical Simulation of Electric and Hydrodynamic Fields Distribution in a Dielectric Liquids Electrofilter Cell
Authors: Narcis C. Ostahie, Tudor Sajin
Abstract:
In this paper a numerical simulation of electric and hydrodynamic fields distribution in an electrofilter for dielectric liquids cell is made. The simulation is made with the purpose to determine the trajectory of particles that moves under the action of external force in an electric and hydrodynamic field created inside of an electrofilter for dielectric liquids. Particle trajectory is analyzed for a dielectric liquid-solid particles suspension.Keywords: Dielectric liquids, electrohydrodynamics, energy, high voltage, particles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16141353 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres
Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav
Abstract:
Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.
Keywords: Amplitude, NACA0012, tubercles, unmanned space robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601352 Structural and Electrochemical Characterization of Columnar-Structured Mn-Doped Bi26Mo10O69-d Electrolytes
Authors: Maria V. Morozova, Zoya A. Mikhaylovskaya, Elena S. Buyanova, Sofia A. Petrova, Ksenia V. Arishina, Robert G. Zaharov
Abstract:
The present work is devoted to the investigation of two series of doped bismuth molybdates: Bi26-2xMn2xMo10O69-d and Bi26Mo10-2yMn2yO69-d. Complex oxides were synthesized by conventional solid state technology and by co-precipitation method. The products were identified by powder diffraction. The powders and ceramic samples were examined by means of densitometry, laser diffraction, and electron microscopic methods. Porosity of the ceramic materials was estimated using the hydrostatic method. The electrical conductivity measurements were carried out using impedance spectroscopy method.
Keywords: Bismuth molybdate, columnar structures, impedance spectroscopy, oxygen ionic conductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16131351 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations
Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh
Abstract:
Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.
Keywords: Annular fins, condenser heat transfer coefficient, heat pipe, natural convection, tilt angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847