Search results for: reasoning gap tasks.
568 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.
Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948567 A Comparison Study of Inspector's Performance between Regular and Complex Tasks
Authors: Santirat Nansaarng, Sittichai Kaewkuekool, Supreeya Siripattanakunkajorn
Abstract:
This research was to study a comparison of inspector-s performance between regular and complex visual inspection task. Visual task was simulated on DVD read control circuit. Inspection task was performed by using computer. Subjects were 10 undergraduate randomly selected and test for 20/20. Then, subjects were divided into two groups, five for regular inspection (control group) and five for complex inspection (treatment group) tasks. Result was showed that performance on regular and complex inspectors was significantly difference at the level of 0.05. Inspector performance on regular inspection was showed high percentage on defects detected by using equal time to complex inspection. This would be indicated that inspector performance was affected by visual inspection task.
Keywords: Visual inspection task, regular and complex task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257566 Intelligent Dynamic Decision-making Model Using in Robot's Movement
Authors: Yufang Cheng, Hsiu-Hua Yang
Abstract:
This work develops a novel intelligent “model of dynamic decision-making" usingcell assemblies network architecture in robot's movement. The “model of dynamic decision-making" simulates human decision-making, and follows commands to make the correct decisions. The cell assemblies approach consisting of fLIF neurons was used to implement tasks for finding targets and avoiding obstacles. Experimental results show that the cell assemblies approach of can be employed to efficiently complete finding targets and avoiding obstacles tasks and can simulate the human thinking and the mode of information transactions.
Keywords: Cell assemblies, fLIF, Hebbian learning rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219565 A Logic Based Framework for Planning for Mobile Agents
Authors: Rajdeep Niyogi
Abstract:
The objective of the paper is twofold. First, to develop a formal framework for planning for mobile agents. A logical language based on a temporal logic is proposed that can express a type of tasks which often arise in network management. Second, to design a planning algorithm for such tasks. The aim of this paper is to study the importance of finding plans for mobile agents. Although there has been a lot of research in mobile agents, not much work has been done to incorporate planning ideas for such agents. This paper makes an attempt in this direction. A theoretical study of finding plans for mobile agents is undertaken. A planning algorithm (based on the paradigm of mobile computing) is proposed and its space, time, and communication complexity is analyzed. The algorithm is illustrated by working out an example in detail.Keywords: Acting, computer network, mobile agent, mobile computing, planning, temporal logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415564 The Size Effects of Keyboards (Keycaps) on Computer Typing Tasks
Authors: Chih-Chun Lai, Jun-Yu Wang
Abstract:
Keyboard is the most important equipment for computer tasks. However, improper design of keyboard would cause some symptoms like ulnar and/or radial deviations. The research goal of this study was to investigate the optimal size(s) of keycaps to increase efficiency. As shown in the questionnaire pre-study with 49 participants aged from 20 to 44, the most commonly used keyboards were 101-key standard keyboards. Most of the keycap sizes (W×L) were 1.3×1.5 cm and 1.5×1.5 cm. The fingertip breadths of most participants were 1.2 cm. Therefore, in the main study with 18 participants, a standard keyboard with each set of the 3-sized (1.2×1.4 cm, 1.3×1.5 cm, and 1.5×1.5 cm) keycaps were used to investigate their typing efficiency, respectively. The results revealed that the differences between the operating times for using 1.3×1.5 cm and 1.2×1.4 cm keycaps was insignificant while operating times for using 1.5×1.5cm keycaps were significantly longer than for using 1.2×1.4 cm or 1.3×1.5 cm, respectively. As for typing error rate, there was no significant difference.
Keywords: Keyboard, Keycap size, Typing efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543563 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083562 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This proposed rule-based classification was applied to WorldView-2 image and results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images, with 85% accuracy.
Keywords: Urban remote sensing, impervious surface, Object- Based, Roof Material, Concrete tile, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3793561 A Discrete Choice Modeling Approach to Modular Systems Design
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.Keywords: Constrained discrete combinatorial choice, modular systems design, optimization problem, PC configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020560 Goal Based Episodic Processing in Implicit Learning
Authors: Peter A. Bibby
Abstract:
Research has suggested that implicit learning tasks may rely on episodic processing to generate above chance performance on the standard classification tasks. The current research examines the invariant features task (McGeorge and Burton, 1990) and argues that such episodic processing is indeed important. The results of the experiment suggest that both rejection and similarity strategies are used by participants in this task to simultaneously reject unfamiliar items and to accept (falsely) familiar items. Primarily these decisions are based on the presence of low or high frequency goal based features of the stimuli presented in the incidental learning phase. It is proposed that a goal based analysis of the incidental learning task provides a simple step in understanding which features of the episodic processing are most important for explaining the match between incidental, implicit learning and test performance.Keywords: Episodic processing, incidental learning, implicitlearning, invariant learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437559 Implementing an Intuitive Reasoner with a Large Weather Database
Authors: Yung-Chien Sun, O. Grant Clark
Abstract:
In this paper, the implementation of a rule-based intuitive reasoner is presented. The implementation included two parts: the rule induction module and the intuitive reasoner. A large weather database was acquired as the data source. Twelve weather variables from those data were chosen as the “target variables" whose values were predicted by the intuitive reasoner. A “complex" situation was simulated by making only subsets of the data available to the rule induction module. As a result, the rules induced were based on incomplete information with variable levels of certainty. The certainty level was modeled by a metric called "Strength of Belief", which was assigned to each rule or datum as ancillary information about the confidence in its accuracy. Two techniques were employed to induce rules from the data subsets: decision tree and multi-polynomial regression, respectively for the discrete and the continuous type of target variables. The intuitive reasoner was tested for its ability to use the induced rules to predict the classes of the discrete target variables and the values of the continuous target variables. The intuitive reasoner implemented two types of reasoning: fast and broad where, by analogy to human thought, the former corresponds to fast decision making and the latter to deeper contemplation. . For reference, a weather data analysis approach which had been applied on similar tasks was adopted to analyze the complete database and create predictive models for the same 12 target variables. The values predicted by the intuitive reasoner and the reference approach were compared with actual data. The intuitive reasoner reached near-100% accuracy for two continuous target variables. For the discrete target variables, the intuitive reasoner predicted at least 70% as accurately as the reference reasoner. Since the intuitive reasoner operated on rules derived from only about 10% of the total data, it demonstrated the potential advantages in dealing with sparse data sets as compared with conventional methods.Keywords: Artificial intelligence, intuition, knowledge acquisition, limited certainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383558 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: Outlier detection, generative adversary networks, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074557 A Multiagent System for Distributed Systems Management
Authors: H. M. Kelash, H. M. Faheem, M. Amoon
Abstract:
The demand for autonomous resource management for distributed systems has increased in recent years. Distributed systems require an efficient and powerful communication mechanism between applications running on different hosts and networks. The use of mobile agent technology to distribute and delegate management tasks promises to overcome the scalability and flexibility limitations of the currently used centralized management approach. This work proposes a multiagent system that adopts mobile agents as a technology for tasks distribution, results collection, and management of resources in large-scale distributed systems. A new mobile agent-based approach for collecting results from distributed system elements is presented. The technique of artificial intelligence based on intelligent agents giving the system a proactive behavior. The presented results are based on a design example of an application operating in a mobile environment.Keywords: distributed management, distributed systems, efficiency, mobile agent, multiagent, response time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084556 Statistical Models of Network Traffic
Authors: Barath Kumar, Oliver Niggemann, Juergen Jasperneite
Abstract:
Model-based approaches have been applied successfully to a wide range of tasks such as specification, simulation, testing, and diagnosis. But one bottleneck often prevents the introduction of these ideas: Manual modeling is a non-trivial, time-consuming task. Automatically deriving models by observing and analyzing running systems is one possible way to amend this bottleneck. To derive a model automatically, some a-priori knowledge about the model structure–i.e. about the system–must exist. Such a model formalism would be used as follows: (i) By observing the network traffic, a model of the long-term system behavior could be generated automatically, (ii) Test vectors can be generated from the model, (iii) While the system is running, the model could be used to diagnose non-normal system behavior. The main contribution of this paper is the introduction of a model formalism called 'probabilistic regression automaton' suitable for the tasks mentioned above.Keywords: Model-based approach, Probabilistic regression automata, Statistical models and Timed automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539555 Effect of Social Media on Knowledge Work
Authors: Pekka Makkonen, Georgios Lampropoulos, Kerstin Siakas
Abstract:
This paper examines the impact of social media on knowledge work. It discloses and highlights which specific aspects, areas and tasks of knowledge work can be improved by the use of social media. Moreover, the study includes a survey about higher education students’ viewpoints in regard to the use of social media as a means to enhance knowledge work and knowledge sharing. The analysis has been conducted based both on empirical data and on discussions about the sources dealing with knowledge work and how it can be enhanced by using social media. The results show that social media can improve knowledge work, knowledge building and maintenance tasks in which communication, information sharing and collaboration play a vital role. Additionally, by using social media, personal, collaborative and supplementary work activities can be enhanced. Based on the results of the study, we suggest how knowledge work can be enhanced when using the contemporary information and communications technologies (ICTs) of the 21st century and recommend future directions towards improving knowledge work.
Keywords: Knowledge work, social media, social media services, improving work performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088554 Hybrid Machine Learning Approach for Text Categorization
Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite
Abstract:
Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.
Keywords: Text categorization, decision trees, neural networks, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806553 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds
Authors: Sahar Sohrabi
Abstract:
The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.Keywords: Bayesian, cloud computing, real-time private cloud, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409552 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation
Authors: Vadim Vagin, Marina Fomina, Oleg Morosin
Abstract:
This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.Keywords: Argumentation, justification degrees, inductive concept formation, noise, generalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617551 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task
Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat
Abstract:
The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943550 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks
Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas
Abstract:
EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16- 20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936549 Accrual Based Scheduling for Cloud in Single and Multi Resource System: Study of Three Techniques
Authors: R. Santhosh, T. Ravichandran
Abstract:
This paper evaluates the accrual based scheduling for cloud in single and multi-resource system. Numerous organizations benefit from Cloud computing by hosting their applications. The cloud model provides needed access to computing with potentially unlimited resources. Scheduling is tasks and resources mapping to a certain optimal goal principle. Scheduling, schedules tasks to virtual machines in accordance with adaptable time, in sequence under transaction logic constraints. A good scheduling algorithm improves CPU use, turnaround time, and throughput. In this paper, three realtime cloud services scheduling algorithm for single resources and multiple resources are investigated. Experimental results show Resource matching algorithm performance to be superior for both single and multi-resource scheduling when compared to benefit first scheduling, Migration, Checkpoint algorithms.Keywords: Cloud computing, Scheduling, Migration, Checkpoint, Resource Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918548 Similarity Detection in Collaborative Development of Object-Oriented Formal Specifications
Authors: Fathi Taibi, Fouad Mohammed Abbou, Md. Jahangir Alam
Abstract:
The complexity of today-s software systems makes collaborative development necessary to accomplish tasks. Frameworks are necessary to allow developers perform their tasks independently yet collaboratively. Similarity detection is one of the major issues to consider when developing such frameworks. It allows developers to mine existing repositories when developing their own views of a software artifact, and it is necessary for identifying the correspondences between the views to allow merging them and checking their consistency. Due to the importance of the requirements specification stage in software development, this paper proposes a framework for collaborative development of Object- Oriented formal specifications along with a similarity detection approach to support the creation, merging and consistency checking of specifications. The paper also explores the impact of using additional concepts on improving the matching results. Finally, the proposed approach is empirically evaluated.Keywords: Collaborative Development, Formal methods, Object-Oriented, Similarity detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469547 The Importance of Applying Established Web Site Design Principles on an Online Performance Management System
Authors: R. W. Brown, P. J. Blignaut
Abstract:
An online performance management system was evaluated, and recommendations were made to improve the system. The study shows the effects of not adhering to the established web design principles and conventions. Furthermore, the study indicates that if the online performance management system is not well designed, it may have negative effects on the overall usability of the system and these negative effects will have consequences for both the employer and employees. The evaluation was done in terms of the usability metrics of effectiveness, efficiency and user satisfaction. Effectiveness was measured in terms of the success rate with which users could execute prescribed tasks in a sandbox system. Efficiency was expressed in terms of the time it took participants to understand what is expected of them and to execute the tasks. Post-test questionnaires were used in order to determine the satisfaction of the participants. Recommendations were made to improve the usability of the online performance management system.
Keywords: Eye tracking, human resource management, performance management, usability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874546 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The modern Artificial Narrow Intelligence (ANI) models cannot: a) independently, situationally, and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, and cognize under uncertainty and changing of the environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU). This system uses a neural network as its computational memory, and activates functions of the perception, identification of real objects, fuzzy situational control, and forming images of these objects. These images and objects are used for modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision Making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, and Wisdom. In doing so are performed analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge of the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of situational control, fuzzy logic, psycholinguistics, informatics, and modern possibilities of data science were applied. The proposed self-controlled system of brain and mind is oriented on use as a plug-in in multilingual subject applications.
Keywords: Computational psycholinguistic cognitive brain and mind system, situational fuzzy control, uncertainty, AI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409545 A Modified Maximum Urgency First Scheduling Algorithm for Real-Time Tasks
Authors: Vahid Salmani, Saman Taghavi Zargar, Mahmoud Naghibzadeh
Abstract:
This paper presents a modified version of the maximum urgency first scheduling algorithm. The maximum urgency algorithm combines the advantages of fixed and dynamic scheduling to provide the dynamically changing systems with flexible scheduling. This algorithm, however, has a major shortcoming due to its scheduling mechanism which may cause a critical task to fail. The modified maximum urgency first scheduling algorithm resolves the mentioned problem. In this paper, we propose two possible implementations for this algorithm by using either earliest deadline first or modified least laxity first algorithms for calculating the dynamic priorities. These two approaches are compared together by simulating the two algorithms. The earliest deadline first algorithm as the preferred implementation is then recommended. Afterwards, we make a comparison between our proposed algorithm and maximum urgency first algorithm using simulation and results are presented. It is shown that modified maximum urgency first is superior to maximum urgency first, since it usually has less task preemption and hence, less related overhead. It also leads to less failed non-critical tasks in overloaded situations.Keywords: Modified maximum urgency first, maximum urgency first, real-time systems, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731544 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear types of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: Dynamic algorithm, Load imbalance, Mapping, Task scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021543 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.
Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078542 Task-Based Language Teaching: A Paradigm Shift in ESL/EFL Teaching and Learning: A Case Study-Based Approach
Authors: Zehra Sultan
Abstract:
The study is based on the Task-based Language Teaching (TBLT) approach which is found to be very effective in the EFL/ESL classroom. This approach engages learners to acquire the usage of authentic language skills by interacting with the real world through a sequence of pedagogical tasks. The use of technology enhances the effectiveness of this approach. This study throws light on the historical background of TBLT, and its efficacy in the EFL /ESL classroom. In addition, this study precisely talks about the implementation of this approach in the General Foundation Program (GFP) of Muscat College, Oman. It furnishes the list of the pedagogical tasks embedded in the language curriculum of the GFP which are skillfully allied to the College graduate attributes. Moreover, the study also discusses the challenges pertaining to this approach from the point of view of teachers, students and its classroom application. Additionally, the operational success of this methodology is gauged through formative assessments of the GFP which is apparent in the students’ progress.
Keywords: Task-based language teaching, authentic language, communicative approach, real world activities, ESL/EFL activities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953541 Qualitative Possibilistic Influence Diagrams
Authors: Wided GuezGuez, Nahla Ben Amor, Khaled Mellouli
Abstract:
Influence diagrams (IDs) are one of the most commonly used graphical decision models for reasoning under uncertainty. The quantification of IDs which consists in defining conditional probabilities for chance nodes and utility functions for value nodes is not always obvious. In fact, decision makers cannot always provide exact numerical values and in some cases, it is more easier for them to specify qualitative preference orders. This work proposes an adaptation of standard IDs to the qualitative framework based on possibility theory.
Keywords: decision making, influence diagrams, qualitative utility, possibility theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530540 Deviations and Defects of the Sub-Task’s Requirements in Construction Projects
Authors: Abdullah Almusharraf, Andrew Whyte
Abstract:
The sub-task pattern in terms of deviations and defects should be identified and understood in order to improve the quality of practices in construction projects. Therefore, sub-task susceptibility to exposure to deviations and defects has been evaluated and classified via six classifications proposed in this study. Thirty-four case studies of specific sub-tasks (from compression members in constructed concrete structures) were collected from seven construction projects in order to examine the study’s proposed classifications. The study revealed that the sub-task has a high sensitivity to deviation, where 91% of the cases were recorded as deviations; however, only 19% of cases were recorded as defects. Other findings were that the actual work during the execution process is a high source of deviation for this sub-task (74%), while only 26% of the source of deviation was due to both design documentation and the actual work. These findings significantly imply that the study’s proposed classifications could be used to determine the pattern of each sub-task and develop proactive actions to overcome issues of sub-task deviations and defects.
Keywords: Sub-tasks, deviations, defects, quality, construction projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147539 Persistence of Termination for Non-Overlapping Term Rewriting Systems
Authors: Munehiro Iwami
Abstract:
A property is called persistent if for any many-sorted term rewriting system , has the property if and only if term rewriting system , which results from by omitting its sort information, has the property. In this paper,we show that termination is persistent for non-overlapping term rewriting systems and we give the example as application of this result. Furthermore we obtain that completeness is persistent for non-overlapping term rewriting systems.Keywords: Theory of computing, Model-based reasoning, termrewriting system, termination
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391