

Abstract—The Scheduling and mapping of tasks on a set of

processors is considered as a critical problem in parallel and
distributed computing system. This paper deals with the problem of
dynamic scheduling on a special type of multiprocessor architecture
known as Linear Crossed Cube (LCQ) network. This proposed
multiprocessor is a hybrid network which combines the features of
both linear types of architectures as well as cube based architectures.
Two standard dynamic scheduling schemes namely Minimum
Distance Scheduling (MDS) and Two Round Scheduling (TRS)
schemes are implemented on the LCQ network. Parallel tasks are
mapped and the imbalance of load is evaluated on different set of
processors in LCQ network. The simulations results are evaluated
and effort is made by means of through analysis of the results to
obtain the best solution for the given network in term of load
imbalance left and execution time. The other performance matrices
like speedup and efficiency are also evaluated with the given
dynamic algorithms.

Keywords—Dynamic algorithm, Load imbalance, Mapping, Task
scheduling.

I. INTRODUCTION

HE performance of parallel application running on
multiprocessor system depends heavily on the mapping of

tasks on a network of processor. This mapping of independent
tasks is referred to as a task scheduling problem which plays a
critical role to utilize the maximum benefits of parallel
computing system. A parallel system without proper task
scheduling algorithm may nullify the benefits of
parallelization. Several researches have produced a number of
algorithms to handle the problem of task assignment on
multiprocessor systems [1]-[5]. Broadly the problem of task
scheduling can be classified into two categories namely static
task assignment and dynamic task assignment.

In static, the decision of task assignment takes place in
advance whereas in dynamic task assignment algorithm the
decision is taken on the fly, no prior knowledge is available.
Static mapping does not involve overhead on the execution
time, on the other hand dynamic mapping incurs more
overload and are complex in nature. Dynamic task allocation
is well advanced and can be applied to a number of real world
applications [2]. Due to its key importance, the task

Z. A. Khan is with the Aligarh Muslim University, Aligarh, India. He is
now with the Department of Computer Science, Aligarh Muslim University,
(Phone: +91-7417780086; e-mail: jmi.amu1@gmail.com).

J. Siddiqui is with the Aligarh Muslim University, Aligarh, India. He is
now with the Department of Computer Science, Aligarh Muslim University,
(e-mail: jamshed_faiza@rediffmail.com).

A. Samad is with the Aligarh Muslim University, Aligarh, India. He is now
with University Women’s Polytechnic, Aligarh Muslim University, (e-mail:
abdussamadamu@gmail.com).

assignment problem has been comprehensively studied and
various methods have been reported in the literature [6]-[10].

Over the time, many scheduling policies were introduced
which are designed to achieve their goals such as efficient
utilization of process elements, minimization of resource
idleness or decreasing the total execution time. Some
techniques are specific to a particular type of multiprocessor
architecture. These approaches are developed using different
strategies such as Minimum Distance Strategy (MDS) [11],
Hierarchical Balancing Method (HBM) [2], Two Round
Scheduling Scheme (TRS) [12] and Multi-stage Scheduling
Scheme [13]. There are algorithms which operate and
optimize the task scheduling based on the prediction of
process behavior. These algorithms consider the process
behavior extraction, classification and prediction [14].
Iterative greedy approach is also a notable scheme to minimize
the total execution time and communication cost [15]. The
main idea in this algorithm is to improve the quality of the
assignment in an iterative manner using results from previous
iteration [15]. These schemes are applied on specific parallel
system and the performance has not been extensively studied
on a hybrid type of multiprocessor system. This paper is
devoted to investigate the scheduling problem on a hybrid
multiprocessor architecture [16]. The proposed network
inherits the properties of cube based network as well as linear
type of networks and named as Linear Crossed Cube (LCQ)
network. It has smaller diameter, lesser number of nodes and
complexity and linear extensibility. Two standard dynamic
algorithms namely MDS and TRS algorithms which were
designed originally for cube based multiprocessor networks
are selected for implementation on the proposed LCQ network
[11], [12]. Simulation results are evaluated and a comparative
study based on various performance parameters is carried out
on the results obtained by the algorithms.

The rest of the paper is organized as follows: Sections II
describes the proposed multiprocessor architecture and its
characteristics. In Section III, the dynamic algorithms are
described. The simulation results are discussed in Section IV
and the comparative study is made. Finally, the paper is
concluded in Section V.

II. PROPOSED MULTIPROCESSOR ARCHITECTURE AND ITS

CHARACTERISTICS

A. Linear Crossed Cube (LCQ)

The Proposed LCQ network is undirected graph and grows
linearly in cube like shape. Let q be the set of designated
processor of Q thus, q = {Pi}, 0 ≤ i ≤ N-1. The Link functions
E1 and E2 define the mapping from q to Q as.

Performance Evaluation of Task Scheduling
Algorithm on LCQ Network

Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:3, 2015

784International Scholarly and Scientific Research & Innovation 9(3) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

3,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

38
9.

pd
f

E1(Pi) = P(i+2) ModN ; ∀ Pi in q
E2 (Pi) = P(i+3) ModN

The two functions E1 and E2 indicate the links between

various processors in the network.
Let Z be a set of N identical processors, represented as

Z= { P0, P1, P2....... PN-1}

The Total number of processor in the network is given by

N =∑ ,

where n is the depth of the network. For different depth,
network having 1, 3, 6, 10, 15, 21 ... processors are possible.

In order to define the link functions, we denote each
processor in a set K as Pin, n being the level/depth in LCQ
where, the processor Pi resides. As per the LCQ extension
policy, one or two processors exist at level/ depth n. Thus at
level 1, P0 and P1 exit and similarly at level 2, P2 and P3 exist
as shown in Fig. 1.

Fig. 1 Linear Crossed Cube with Eight Processors

B. Characteristics of LCQ

The following are the various topological properties of the
LCQ network.

Number of Nodes: - The LCQ is an undirected graph, where
the total number of nodes is:

N = ∑ e.g. {1, 3, 6, 15, 21......}

It shows that the network grows linearly, where 1≤ K ≤ n, n

is the level number up to which the network is designed.
Degree: - The degree of nodes is defined as the total

number of edges (n-1) incident on each vertex. The degree of
each vertex in the LCQ is remain constant i.e. 4 irrespective of
the depth of network.

Diameter: - The diameter of network is the maximum
eccentricity of any node in the network. It is the greatest
distance between any pair of nodes. In LCQ, it is observed that
the diameter does not always increase with the addition of a
layer of processors. The diameter of LCQ is └√N┘.

Cost of LCQ: - The cost of a network could be obtained as
the product of the degree and diameter, hence for an LCQ the
cost is equal to 4*(└√N┘). Therefore, the cost is dependent on
the value of diameter.

Extensibility: - The major advantage of proposed LCQ
network is that its extension can be carried out in a linear
fashion by adding one or two nodes in every extension. When
single node is added, we call it odd extension and similarly an
even extension can be made by adding two nodes in a
particular extension. The important feature is that the proposed
LCQ network does not have an exponential extension.

Among the better known architectures on which much work
has been done in particular are HC, CQ and SCQ. The LEC is
another architecture different from HC, however, possess
some useful properties. Motivated by the properties of LEC,
CQ and SCQ the proposed LCQ network has been designed.
The above topological properties are analyzed with the above
mentioned architectures. The values of various parameters are
evaluated mathematically for comparison purpose. Table I
gives a summary of various parameters for different type of
multiprocessor networks.

TABLE I

SUMMARY OF VARIOUS PARAMETERS OF DIFFERENT MULTIPROCESSOR

NETWORK

Parameter HC CQ SC SCQ LEC LCQ

Nodes 2n 2n n!2m n!2m 2n ∑K

Diameter n n
m+└3(n-

1)/2┘
┌(m+1)/2┐

+└3(n-1)/2┘
└n┘ (└√N┘)

Degree n ┌n+1/2┐ m+n-1 m+n-1 4 4

Cost n2 n┌(n+1)/
2┐

(m+n-1)
(m+└3(n-

1)/2┘)

(m+n-1)(
┌(m+1)/2┐

+└3(n-1)/2┘)
4└n┘ 4(└√N┘)

III. ANALYSIS OF VARIOUS EXISTING ALGORITHMS

The most common state-of-art techniques are based on
reducing the communication overhead and consequently the
total execution time. The goal is to maximize the overall CPU
utilization while offering better performance by parallel
execution of concurrent tasks. The performance of a parallel
application running on a set of processors heavily depends on
the mapping of tasks partitioned from the application onto the
available processors in the system [15]. The performance
evaluation can be made in term of comparisons metrics such
as Load Imbalance Factor (LIF), execution time (ET), speed
up (SP) and efficiency (E) of the parallel program execution
on different set of processors [16]-[20]. The multiprocessor
scheduling environment uses more than one processor to
execute its processors. Therefore, the performance is evaluated
and analyzed on different networks which consist of a number
of identical processors or nodes. Though many approaches
have been reported for mapping tasks on multiprocessors
networks, we considered the two recently reported schemes
which were originally designed for cube based system. These
algorithms consider the basic approach of mapping and
migration depending up on the level of connectivity. In the
first approach the concept of minimum distance property has
been incorporated which considers only the directly connected
nodes among the network therefore named as minimum
distance scheduling (MDS). The pseudo code for the
algorithm is given in Fig. 2.

P0

P2 P3

P4 P5

P6 P7

P1

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:3, 2015

785International Scholarly and Scientific Research & Innovation 9(3) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

3,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

38
9.

pd
f

Assume the AL (Absolute Load), RAL (Round Absolute Load), PM (Total
number of processors are given)
/* Generate the next level of task generation */
zs = = 2 * zs;
zs = = 3 * zs;
it_ count ++;
{
if (zs [it_count2] > RAL {
/* migrate till load at nodes becomes equal to or less then RAL */
while (true) {
migrate (it_count2)
if (zs [it_count2] < = = RAL) break;
} } }
lif = (M(zs) – AL) / AL;
} {
migrate (p_number)
temp[k++] = =i;
k--;
}

Fig. 2 Pseudo Code of Minimum Scheduling (MDS)

Similarly, another algorithm considers the two level
connectivity and named as Two Round Scheduling (TRS)
[12]. The TRS scheme takes into consideration those acceptor
nodes which are not connected directly to donor node. There
may be more than one path between the donor and acceptor
processors which require multi-hope. To maintain the
efficiency of algorithm the TRS limits level of connectivity up
to one intermediate node between donor and acceptor nodes.
The Pseudo code for the TRS is going in Fig. 3.

/* Check the connectivity of node i with node j. Assume the level of
connectivity is given (1 or 2)*/
int connected (int i, int j, int level) /* returns true if nodes i, j are connected */
{
 /* Display(“\n node %d is connected to %d: %d”, i, j, adj [i][j]); */
 if (level = = 1)
 return adj [i][j];
 for(int k = 0; k < no_proc; k++)
 {
 if(k = = i || k = = j) continue;
 if(connected (i ,k , 1) && connected (k, j, 1))
 {
 /* Display (“\n node %d is connected to %d through %d”, i, j, k); */
 return 1;
 }
 }
 return 0;

Fig. 3 Pseudo Code of Two Round Scheduling (TRS)

A. Task Scheduling Model

The model of parallel system on which the task assignment
is carried out consists of set of fully connected processors or
nodes. There are no precedence relations between tasks and
any task can be executed cost. The overall cost depends up on
the mapping of application and the communication cost
incurred in the network. In the proposed model the tasks are
generated in a deterministic manner in the form of a regular
tree. Each node of the tree represents a task, and executed in
parallel in breadth-first manner starting from the root task
which is assigned to some given nodes of the network. The
total number of nodes in the task tree at level represents a

particular stage of the load. We consider the two patterns of
tree structure namely binary tree and ternary tree structure.

B. Performance Parameters

The performance analysis of task scheduling on the
proposed network is carried out based on the fallowing
parameters.

Load Imbalance factor (LIF):- The Load imbalance factor
for Kth stages, denoted as LIFk is defined as.

LIFk = (max {loadk (Pi} – ideal-loadk) / ideal-loadk,

where, ideal-loadk =(loadk (P0)+loadk (P1) + …loadk (PN-1)) /N
and max(loadk (Pi)) denotes the maximum load pertaining to
stage K on a processor Pi, 0≤ i ≤ N-1, and loadk (Pi) stands for
the load on processor Pi due to K

th stage. Each stage of the task
structure (Load) represents a finite number of tasks.

Execution Time (ET):- The execution time of a given task is
defined as the time spent by the system executing spent
executing run-time or system services on its behalf. The
execution time is the time during which a program is running
(executing), in contrast to other phases of a program's
lifecycle. The Execution time is used to calculate the runtime
of scheduling algorithm which includes waiting time of job in
queue and runtime in each resource.

Speedup (SP):- Speedup is the ratio of sequential execution
time and parallel execution time.

SP= Sequential Execution Time (SET)

 Parallel Execution Time (PET)

Efficiency (E):- The ratio of speedup and total number of
processors (N) is called efficiency of a parallel program.
Higher speedup or using lesser number of nodes makes the
system efficient.

E= SP
 N

IV. RESULT AND DISCUSSION

In this section the simulation results after implementing the
dynamic task scheduling algorithm on LCQ network are
discussed along with the comparative study of various results.

A. Simulation Results

In order to evaluate the performance of task scheduling on
the proposed LCQ network the various parameters are
evaluated. The criteria of an efficient scheduling algorithm
depend up on the effective utilization of nodes by distributing
tasks evenly. The effectiveness of node utilization could be
measured in terms of LIF. The LIF represents the load
imbalance left after a scheduling operation is performed on the
available network. In the given work, the LIF’s are computed
with different algorithm by considering uniform task
generation on a network of eight nodes. These results are
shown in Figs. 4 and 5 by the curves plotted as LIF against the
load stages.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:3, 2015

786International Scholarly and Scientific Research & Innovation 9(3) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

3,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

38
9.

pd
f

Fig. 4 Performance of MDS &TRS Scheme on LCQ Network

When MDS scheme is implemented on the LCQ network

the task are scheduled with two types of tree type task
structures. The mapping of task is performed at various levels
of task structures and behavior is shown in the curves given
Fig 4. It is clear from the curves that the LIF remains non zero
even for higher stages of the load. On the other hand when
TRS scheme is implemented the LIF is continuously reducing
and become zero at 7th level of task structure.

Fig. 5 Performance of MDS &TRS Scheme on LCQ Network

Similar results are evaluated with the same algorithm for a
different type of task structure namely complete ternary tree
and the curves are plotted and shown in Fig. 5. The results
obtained indicate that both the scheduling are performing well
when implemented on the given network, however, TRS
scheme produced better performance as compare to MDS. In
this case the performance of MDS is comparatively better as
compare to binary task tree structure.

To further analyze the effectiveness of the scheduling
algorithms we used other parameters like speedup and
efficiency when parallel tasks are mapped on the LCQ
network. Since the TRS algorithm performing well in terms of
LIF we evaluated these parameters by implementing the TRS
algorithm with two different type of task structure on different
sets of processors. These results are given in Tables II and III.
The results show that efficiency is not only dependent upon
the number of nodes it also depends upon the type of task
structure used. For instance, when task is generated evenly;
the network with odd number of nodes results better efficiency
and high speed up and vice-versa.

TABLE II
PERFORMANCE OF LCQ WITH BINARY TREE TASK STRUCTURE

Processor Speedup Efficiency

4 1.5 37.56

5 3.2 64.01

6 1.6 26.62

7 3.1 44.28

8 3.1 39.66

TABLE III
PERFORMANCE OF LCQ WITH TERNARY TREE TASK STRUCTURE

Processor Speedup Efficiency

4 1.6 40.00

5 1.6 32.00

6 1.6 26.66

7 1.5 21.42

8 1.5 20.00

V. COMPARATIVE STUDY

The comparative study is made on the basis of the minimum
value of LIF obtained when MDS and TRS are implemented
on the LCQ network with eight processors. The Results are
shown in Figs. 4 and 5 which indicate that both the scheduling
algorithms producing better results when sufficient number of
task are available on the network. Similarly, the comparison is
made on the maximum and minimum value of LIF with
different sets of processor that's four, five, six, seven and eight
processors. These results are shown in Figs. 6 and 7.

Fig. 6 Performance of MDS &TRS Scheme on LCQ Network

The maximum value of LIF is similar on LCQ network in

both the algorithms on different sets of processor for binary
type of task structures. However, The MDS scheme has non-
zero values of LIF on LCQ with eight processors. Therefore,
the MDS scheme is not performing better when numbers of
processors are increased.

Fig. 7 Performance of MDS &TRS Scheme on LCQ Network

In case of complete ternary tree MDS and TRS are having

same maximum and minimum value of LIF on four, five, six,
seven and eight processors of LCQ multiprocessor network as
depicted in Fig. 7.

As for as speedup and efficiency are concerned these
parameters are evaluated keeping in mind the better
performance of TRS. The results are evaluated by
implementing TRS on different sets of processors of LCQ
network. Table II shows that the maximum speed up and
efficiency are obtained when TRS algorithm is implemented

MDS vs TRS
 Complete Binary Tree

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8 9 10

Load Stages

L
IF

(%
)

MDS

TRS

MDS vs TRS
Complete Ternary Tree

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

Load Stages

L
IF

 (
%

)

MDS

TRS

0

100

200

300

400

500

600

700

LIF (%)

4 5 6 7 8

Number of Processor

MDS Vs TRS
Complete Ternary Tree

MDS(Max)

MDS(Min)

TRS(Max)

TRS(Min)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:3, 2015

787International Scholarly and Scientific Research & Innovation 9(3) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

3,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

38
9.

pd
f

with odd number of processors in LCQ network. However,
these results are applicable only when complete binary tree
task structure is taken into consideration. The results are
changed when ternary tree task structure is considered. This
feature is demonstrated in Table III.

VI. CONCLUSIONS

The overall performance of LCQ multiprocessor
architecture is affected by a number of the factors, such as
imbalance of load among the processor and scheduling
overheads. To analyze the performance, two dynamic
scheduling schemes Minimum Distance Scheduling (MDS)
and Two Round Scheduling (TRS) are implemented on LCQ
multiprocessor architecture. The performance is evaluated in
terms of Load Imbalance Factor, Speedup and Efficiency. The
comparative study shows that both the scheduling schemes are
equally performing well on the LCQ network with lesser
number of nodes. When number of nodes increase the TRS
Scheme produces better results. The efficiency and speedup
are not only dependent on the types of scheduling scheme,
they are also depending on to the type of task pattern used.
When the tasks are generated in binary pattern the algorithm
producing better results when odd numbers of processors are
considered. On the other hand, when task are generated in the
multiple of three better efficiency is obtained with even
number of processors by considering the appropriate task
structure. The standard dynamic scheduling scheme can be
applied to map the parallel task on the proposed LCQ network.
In future, we intend to design to design the task structure
independent algorithm for the proposed LCQ network.

REFERENCES
[1] I. Ahmad and A. Ghafoor, “Semi-Distributed Load Balancing for

Massively Parallel Multicomputer Systems,” IEEE Transactions on
Software Engineering, vol. 17, no. 10, pp. 987-1004, 1991.

[2] M. H. W. LeMair and A. P. Reeves, “Strategies for dynamic load
balancing on highly parallel computers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 4, no. 9, pp. 979-993, 1993.

[3] M. J. Zaki, W. Li and S. Parthasarathy, “Customized Dynamic Load
Balancing for a Network of Workstations,” Journal of Parallel and
Distributed Computing, no. 43, pp. 156-162, 1997.

[4] S. Sharma, S. Singh and M. Sharma, “Performance Analysis of Load
Balancing Algorithms,” in proceeding of World Academy of Science,
Engineering and Technology, vol. 2 , pp. 02-21, 2008.

[5] Z. Zeng and B. Veeravalli, “Design and Performance Evaluation of
Queue-and-Rate-Adjustment Dynamic Load Balancing Policies for
Distributed Networks,” IEEE Transactions on Computers, vol. 55, no.
11, pp. 1410-1422, 2006.

[6] K. Lakshmanan, D. D. Niz and R. Rajkumar, “Coordinated Task
Scheduling, Allocation and Synchronization on Multiprocessors,” in
proceeding of 30th IEEE Real-Time Systems Symposium, pp. 469-478,
2009.

[7] A. Chandra and P. Shenoy, “Hierarchical Scheduling for Symmetric
Multiprocessors,” IEEE Transactions On Parallel And Distributed
Systems, vol. 19, no. 3, pp. 418-431, 2008.

[8] J. Jia, B. Veeravalli and J. Weissman, “Scheduling Multiprocessor
Divisible Loads on Arbitrary Networks,” IEEE Transactions On Parallel
And Distributed Systems, vol. 21, no. 4, pp. 520-531, 2010.

[9] M. Guzek, J. E. Pecero, B. Dorronsoro and P. Bouvry, “Multi-objective
evolutionary algorithms for energy-aware scheduling on distributed
computing systems,” Applied Soft Computing, vol. 24, pp. 432–446,
2014.

[10] F. A. Omara and M. M. Arafa, “Genetic algorithms for task scheduling
problem,” Journal Parallel Distributed Computing, vol. 70, pp. 13–22,
2010.

[11] A. Samad, M. Q. Rafiq and O. Farooq, “A Novel Algorithm For Fast
Retrival Of Information From A Multiprocessor Server,” in proceeding
of 7th WSEAS International Conference on software engineering,
parallel and distributed systems (SEPADS '08), University of
Cambridge, UK, pp. 68-73, 2008.

[12] A. Samad, M. Q. Rafiq and O. Farooq, “Two Round Scheduling (TRS)
Scheme for Linearly Extensible Multiprocessor Systems,” International
Journal of Computer Applications, vol. 38, no. 10, pp. 34-40, 2012.

[13] A. Samad, M. Q. Rafiq and O. Farooq, “Multi-stage scheduling scheme
for massively parallel systems,” in proceeding of International
Conference on Software Engineering and Mobile Application Modelling
and Development (ICSEMA), pp. 168-176, 2012.

[14] E. Dodonov and R. F. d. Mello, “A novel approach for distributed
application scheduling based on prediction of communication events,”
Future Generation Computer Systems, vol. 26, pp. 740–752, 2010.

[15] Q. Kang, H. He and H. Song, “Task assignment in heterogeneous
computing systems using an effective iterated greedy algorithm,” The
Journal of Systems and Software, vol. 84, pp. 985–992, 2011.

[16] N. Rajak, A. Dixit and R. Rajak, “Classification of list task scheduling
algorithms: A short review paper,” Journal of Industrial and Intelligent
Information, vol. 2, no. 4, pp. 320-323, 2014.

[17] R. Kaur and R. Kaur, “Multiprocessor scheduling using task duplication
based scheduling algorithms: A review paper,” International Journal of
Application or Innovation in Engineering and Management, vol. 2, no. 4,
pp. 311-317, 2013.

[18] R. Hwang, M. Gen and H. Katayama, “A comparison of multiprocessor
task scheduling algorithms with communication costs,” Computers and
Operations Research, vol. 35, pp. 976-993, 2008.

[19] S. Bansal, B. Kothari and C. Hota, “Dynamic Task-Scheduling in Grid
Computing using Prioritized Round Robin Algorithm,” International
Journal of Computer Science Issues, vol. 8, no. 2, pp. 472–477, 2011.

[20] Z. A. Khan, J. Siddiqui and A. Samad, “Linear Crossed Cube (LCQ): A
New Interconnection Network Topology for Massively Parallel
System,” International Journal of Computer Network and Information
Security, vol. 7, no. 3, pp. 18-25, 2015.

Prof. Jamshed Siddiqui received his Ph.D degree from IIT
Roorkee, India. His research areas and special interests include
Information Systems, MIS, Systems Analysis & Design,
Knowledge Management Systems, E-Business, Data Mining
and Parallel Computing. His areas of teaching interest includes

Analysis and design of Information system, Software Engineering,
Performance evaluation of computer systems, Computer oriented Numerical
methods. He has published various papers in international journals and
journals of international repute such as Journal of Information Technology,
TQM Magazine, (Emerald Group Publishing Ltd.), Business Process
Management Journal, (Emerald Group Publishing Ltd.), Journal of
Information, Knowledge, and Management, Journal of Systems Management,
International Journal of Services and Operations Management etc.

Dr. Abdus Samad received his Ph.D degree in Computer
Engineering from Aligarh Muslim University, Aligarh, India in
2010. He completed Bsc. Engg and M.Tech. From Z. H. College
of Engineering & Technology, Aligarh Muslim University,
Aligarh in the year 1997 and 1999 respectively. The research

areas are parallel and distributed systems, algorithm design, microprocessor
and parallel system design. Contributed and attended various national and
international conferences in India and abroad, and published papers in reputed
journals. Member of various professional organizations. Presently working as
Assistant Professor in Computer Engineering at University Women’s
Polytechnic, AMU, Aligarh and having teaching experience of more than 16
years.

Mr. Zaki A. Khan pursuing Ph.D from Aligarh Muslim
University Aligarh, India. He recived Msc.Tech (industrial math’s
with computer Applications) and Bsc (H) Mathematics degree
from Jamia Millia Islamia New Delhi, India in 2010 and 2007

respectively. The research areas are parallel and distributed systems,
Scheduling Algorithm, Load Balancing, Information Retrieval,
Multiprocessor System, and Green Computing. Contributed and attended

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:3, 2015

788International Scholarly and Scientific Research & Innovation 9(3) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

3,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

38
9.

pd
f

national and International conferences and workshops in India. He has
published various research papers in reputed International journals. Member
of CSTA, IAENG, IACSIT and UACEE.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:3, 2015

789International Scholarly and Scientific Research & Innovation 9(3) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

3,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

38
9.

pd
f

