Search results for: quantum kernel
208 Fast Calculation for Particle Interactions in SPH Simulations: Outlined Sub-domain Technique
Authors: Buntara Sthenly Gan, Naohiro Kawada
Abstract:
A simple and easy algorithm is presented for a fast calculation of kernel functions which required in fluid simulations using the Smoothed Particle Hydrodynamic (SPH) method. Present proposed algorithm improves the Linked-list algorithm and adopts the Pair-Wise Interaction technique, which are widely used for evaluating kernel functions in fluid simulations using the SPH method. The algorithm is easy to be implemented without any complexities in programming. Some benchmark examples are used to show the simulation time saved by using the proposed algorithm. Parametric studies on the number of divisions for sub-domains, smoothing length and total amount of particles are conducted to show the effectiveness of the present technique. A compact formulation is proposed for practical usage.
Keywords: Technique, fluid simulation, smoothing particle hydrodynamic (SPH), particle interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633207 Problems and Possible Solutions with the Development of a Computer Model of Quantum Theory
Authors: Hans H. Diel
Abstract:
A computer model of Quantum Theory (QT) has been developed by the author. Major goal of the computer model was support and demonstration of an as large as possible scope of QT. This includes simulations for the major QT (Gedanken-) experiments such as, for example, the famous double-slit experiment. Besides the anticipated difficulties with (1) transforming exacting mathematics into a computer program, two further types of problems showed up, namely (2) areas where QT provides a complete mathematical formalism, but when it comes to concrete applications the equations are not solvable at all, or only with extremely high effort; (3) QT rules which are formulated in natural language and which do not seem to be translatable to precise mathematical expressions, nor to a computer program. The paper lists problems in all three categories and describes also the possible solutions or circumventions developed for the computer model.Keywords: Computability, Foundation of Quantum Mechanics, Measurement Process, Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704206 A Quantum-Inspired Evolutionary Algorithm forMultiobjective Image Segmentation
Authors: Hichem Talbi, Mohamed Batouche, Amer Draa
Abstract:
In this paper we present a new approach to deal with image segmentation. The fact that a single segmentation result do not generally allow a higher level process to take into account all the elements included in the image has motivated the consideration of image segmentation as a multiobjective optimization problem. The proposed algorithm adopts a split/merge strategy that uses the result of the k-means algorithm as input for a quantum evolutionary algorithm to establish a set of non-dominated solutions. The evaluation is made simultaneously according to two distinct features: intra-region homogeneity and inter-region heterogeneity. The experimentation of the new approach on natural images has proved its efficiency and usefulness.Keywords: Image segmentation, multiobjective optimization, quantum computing, evolutionary algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364205 Optimization of Laser-Induced Breakdown Spectroscopy (LIBS) for Determination of Quantum Dots (Qds) in Liquid Solutions
Authors: David Prochazka, Ľudmila Ballová, Karel Novotný, Jan Novotný, Radomír Malina, Petr Babula, Vojtěch Adam, René Kizek, Klára Procházková, Jozef Kaiser
Abstract:
Here we report on the utilization of Laser-Induced Breakdown Spectroscopy (LIBS) for determination of Quantum Dots (QDs) in liquid solution. The process of optimization of experimental conditions from choosing the carrier medium to application of colloid QDs is described. The main goal was to get the best possible signal to noise ratio. The results obtained from the measurements confirmed the capability of LIBS technique for qualitative and afterwards quantitative determination of QDs in liquid solution.Keywords: Laser-Induced Breakdown Spectroscopy, liquid analysis, nanocrystals, nanotechnology, Quantum dots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268204 Highly Efficient White Light-emitting Diodes Based on Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials
Authors: J. Y. Woo, J. Lee, N. Kim, C.-S. Han
Abstract:
This paper reports on the enhanced photoluminescence (PL) of nanocomposites through the layered structuring of phosphor and quantum dot (QD). Green phosphor of Sr2SiO4:Eu, red QDs of CdSe/CdS/CdZnS/ZnS core-multishell, and thermo-curable resin were used for this study. Two kinds of composite (layered and mixed) were prepared, and the schemes for optical energy transfer between QD and phosphor were suggested and investigated based on PL decay characteristics. It was found that the layered structure is more effective than the mixed one in the respects of PL intensity, PL decay and thermal loss. When this layered nanocomposite (QDs on phosphor) is used to make white light emitting diode (LED), the brightness is increased by 37 %, and the color rendering index (CRI) value is raised to 88.4 compared to the mixed case of 80.4.Keywords: Quantum Dot, Nanocomposites, Photoluminescence, Light Emitting Diode
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3200203 Environmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison
Authors: Nima Hatami
Abstract:
In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order Thin- Plate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The speech signals used here were taken from the OGI Multi-Language Telephone Speech Corpus database and were corrupted with six type of environmental noise from NOISEX-92 database. Experimental results show that the SOTPS kernel can considerably outperform the Gaussian and FOTPS functions on speech interference cancellation problem.Keywords: Environmental interference, interference cancellation of speech, Radial Basis Function networks, Gaussian and TPS kernels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566202 Face Recognition with PCA and KPCA using Elman Neural Network and SVM
Authors: Hossein Esbati, Jalil Shirazi
Abstract:
In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained.Keywords: Face recognition, Principal Component Analysis, Kernel Principal Component Analysis, Neural network, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932201 Evaluating some Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).
Keywords: Features selection, learning with kernels, support vector machine, genetic algorithms and classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541200 Power System Security Constrained Economic Dispatch Using Real Coded Quantum Inspired Evolution Algorithm
Authors: A. K. Al-Othman, F. S. Al-Fares, K. M. EL-Nagger
Abstract:
This paper presents a new optimization technique based on quantum computing principles to solve a security constrained power system economic dispatch problem (SCED). The proposed technique is a population-based algorithm, which uses some quantum computing elements in coding and evolving groups of potential solutions to reach the optimum following a partially directed random approach. The SCED problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Real Coded Quantum-Inspired Evolution Algorithm (RQIEA) is then applied to solve the constrained optimization formulation. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that RQIEA is very applicable for solving security constrained power system economic dispatch problem (SCED).Keywords: State Estimation, Fuzzy Linear Regression, FuzzyLinear State Estimator (FLSE) and Measurements Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717199 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation
Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.
Abstract:
The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consumingKeywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596198 The Journey of a Malicious HTTP Request
Authors: M. Mansouri, P. Jaklitsch, E. Teiniker
Abstract:
SQL injection on web applications is a very popular kind of attack. There are mechanisms such as intrusion detection systems in order to detect this attack. These strategies often rely on techniques implemented at high layers of the application but do not consider the low level of system calls. The problem of only considering the high level perspective is that an attacker can circumvent the detection tools using certain techniques such as URL encoding. One technique currently used for detecting low-level attacks on privileged processes is the tracing of system calls. System calls act as a single gate to the Operating System (OS) kernel; they allow catching the critical data at an appropriate level of detail. Our basic assumption is that any type of application, be it a system service, utility program or Web application, “speaks” the language of system calls when having a conversation with the OS kernel. At this level we can see the actual attack while it is happening. We conduct an experiment in order to demonstrate the suitability of system call analysis for detecting SQL injection. We are able to detect the attack. Therefore we conclude that system calls are not only powerful in detecting low-level attacks but that they also enable us to detect highlevel attacks such as SQL injection.
Keywords: Linux system calls, Web attack detection, Interception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009197 Performance Analysis of Quantum Cascaded Lasers
Authors: M. B. El_Mashade, I. I. Mahamoud, M. S. El_Tokhy
Abstract:
Improving the performance of the QCL through block diagram as well as mathematical models is the main scope of this paper. In order to enhance the performance of the underlined device, the mathematical model parameters are used in a reliable manner in such a way that the optimum behavior was achieved. These parameters play the central role in specifying the optical characteristics of the considered laser source. Moreover, it is important to have a large amount of radiated power, where increasing the amount of radiated power represents the main hopping process that can be predicted from the behavior of quantum laser devices. It was found that there is a good agreement between the calculated values from our mathematical model and those obtained with VisSim and experimental results. These demonstrate the strength of mplementation of both mathematical and block diagram models.
Keywords: Quantum Cascaded Lasers (QCLs), Modeling, Block Diagram Programming, Intersubband transitions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446196 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals
Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing
Abstract:
Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905195 Design and Optimization of Parity Generator and Parity Checker Based On Quantum-dot Cellular Automata
Authors: Santanu Santra, Utpal Roy
Abstract:
Quantum-dot Cellular Automata (QCA) is one of the most substitute emerging nanotechnologies for electronic circuits, because of lower power consumption, higher speed and smaller size in comparison with CMOS technology. The basic devices, a Quantum-dot cell can be used to implement logic gates and wires. As it is the fundamental building block on nanotechnology circuits. By applying XOR gate the hardware requirements for a QCA circuit can be decrease and circuits can be simpler in terms of level, delay and cell count. This article present a modest approach for implementing novel optimized XOR gate, which can be applied to design many variants of complex QCA circuits. Proposed XOR gate is simple in structure and powerful in terms of implementing any digital circuits. In order to verify the functionality of the proposed design some complex implementation of parity generator and parity checker circuits are proposed and simulating by QCA Designer tool and compare with some most recent design. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.
Keywords: Clock, CMOS technology, Logic gates, QCA Designer, Quantum-dot Cellular Automata (QCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7841194 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System
Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain
Abstract:
This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819193 Process Analysis through Length Consistency
Authors: James E. Ponder
Abstract:
The requirement for consistency in physics can sometimes offer a common ground between disciplines such that their fundamental equations share a common parameter set and mathematical method for equation extraction. The parameter set shared by Relativity and Quantum Wave Mechanics enables an analysis which will be seen to be very straightforward, primarily classical in nature using linear algebra concepts, yet deriving a theoretical estimate of the value of the Gravitational Constant along with dependencies never before known.
Keywords: Gravitational Constant, Physical Consistency, Quantum Mechanics, Relativity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544192 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding
Authors: Mohd A. Mezher, Maysam F. Abbod
Abstract:
Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630191 An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes
Authors: İnci M. Erhan
Abstract:
A numerical method for solving the time-independent Schrödinger equation of a particle moving freely in a three-dimensional axisymmetric region is developed. The boundary of the region is defined by an arbitrary analytic function. The method uses a coordinate transformation and an expansion in eigenfunctions. The effectiveness is checked and confirmed by applying the method to a particular example, which is a prolate spheroid.Keywords: Bessel functions, Eigenfunction expansion, Quantum billiard, Schrödinger equation, Spherical harmonics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5221190 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Authors: Mohamad Saab, Sidi Souvi
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.
Keywords: ASTEC, Accident Source Term Evaluation Code, quantum chemical methods, severe nuclear accident, thermochemical database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825189 The Emission Spectra Due to Exciton-Exciton Collisions in GaAs/AlGaAs Quantum Well System
Authors: Surendra K Pandey
Abstract:
Optical emission based on excitonic scattering processes becomes important in dense exciton systems in which the average distance between excitons is of the order of a few Bohr radii but still below the exciton screening threshold. The phenomena due to interactions among excited states play significant role in the emission near band edge of the material. The theory of two-exciton collisions for GaAs/AlGaAs quantum well systems is a mild attempt to understand the physics associated with the optical spectra due to excitonic scattering processes in these novel systems. The four typical processes considered give different spectral shape, peak position and temperature dependence of the emission spectra. We have used the theory of scattering together with the second order perturbation theory to derive the radiative power spontaneously emitted at an energy ħω by these processes. The results arrived at are purely qualitative in nature. The intensity of emitted light in quantum well systems varies inversely to the square of temperature, whereas in case of bulk materials it simply decreases with the temperature.
Keywords: Exciton-Exciton Collisions, Excitonic Scattering Processes, Interacting Excitonic States, Quantum Wells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443188 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns
Authors: Hyun-Woo Cho
Abstract:
The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607187 Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity
Authors: Mamoun F. Al-Mistarihi
Abstract:
We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.Keywords: Volterra Filter, Pulse Inversion, Ultrasonic Imaging, Contrast Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595186 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.
Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413185 Saturated Gain of Doped Multilayer Quantum Dot Semiconductor Optical Amplifiers
Authors: Omar Qasaimeh
Abstract:
The effect of the number of quantum dot (QD) layers on the saturated gain of doped QD semiconductor optical amplifiers (SOAs) has been studied using multi-population coupled rate equations. The developed model takes into account the effect of carrier coupling between adjacent layers. It has been found that increasing the number of QD layers (K) increases the unsaturated optical gain for K<8 and approximately has no effect on the unsaturated gain for K ≥ 8. Our analysis shows that the optimum ptype concentration that maximizes the unsaturated optical gain of the ground state is NA Ôëê 0.75 ×1018cm-3 . On the other hand, it has been found that the saturated optical gain for both the ground state and the excited state are strong function of both the doping concentration and K where we find that it is required to dope the dots with n-type concentration for very large K at high photon energy.Keywords: doping, multilayer, quantum dot optical amplifier, saturated gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929184 Join and Meet Block Based Default Definite Decision Rule Mining from IDT and an Incremental Algorithm
Authors: Chen Wu, Jingyu Yang
Abstract:
Using maximal consistent blocks of tolerance relation on the universe in incomplete decision table, the concepts of join block and meet block are introduced and studied. Including tolerance class, other blocks such as tolerant kernel and compatible kernel of an object are also discussed at the same time. Upper and lower approximations based on those blocks are also defined. Default definite decision rules acquired from incomplete decision table are proposed in the paper. An incremental algorithm to update default definite decision rules is suggested for effective mining tasks from incomplete decision table into which data is appended. Through an example, we demonstrate how default definite decision rules based on maximal consistent blocks, join blocks and meet blocks are acquired and how optimization is done in support of discernibility matrix and discernibility function in the incomplete decision table.Keywords: rough set, incomplete decision table, maximalconsistent block, default definite decision rule, join and meet block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290183 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: Food (Ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501182 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.
Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208181 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.
Keywords: Connected components, Embrace threads, Local weighted kernel, Structuring element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175180 High Performance In0.42Ga0.58As/In0.26Ga0.74As Vertical Cavity Surface Emitting Quantum Well Laser on In0.31Ga0.69As Ternary Substrate
Authors: Md. M. Biswas, Md. M. Hossain, Shaikh Nuruddin
Abstract:
This paper reports on the theoretical performance analysis of the 1.3 μm In0.42Ga0.58As /In0.26Ga0.74As multiple quantum well (MQW) vertical cavity surface emitting laser (VCSEL) on the ternary In0.31Ga0.69As substrate. The output power of 2.2 mW has been obtained at room temperature for 7.5 mA injection current. The material gain has been estimated to be ~3156 cm-1 at room temperature with the injection carrier concentration of 2×1017 cm-3. The modulation bandwidth of this laser is measured to be 9.34 GHz at room temperature for the biasing current of 2 mA above the threshold value. The outcomes reveal that the proposed InGaAsbased MQW laser is the promising one for optical communication system.Keywords: Quantum well, VCSEL, output power, materialgain, modulation bandwidth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721179 A Kernel Based Rejection Method for Supervised Classification
Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy
Abstract:
In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448