Search results for: optimism bias
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 165

Search results for: optimism bias

45 Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece

Authors: K. Vallianou, T. Alexopoulos, V. Plaka, M. K. Seleventi, V. Skanavis, C. Skanavis

Abstract:

The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.

Keywords: Community resilience, natural disasters, place attachment, wildfire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
44 The Study on the Stationarity of Housing Price-to-Rent and Housing Price-to-Income Ratios in China

Authors: Wen-Chi Liu

Abstract:

This paper aims to examine whether a bubble is present in the housing market of China. Thus, we use the housing  price-to-income ratios and housing price-to-rent ratios of 35 cities from 1998 to 2010. The methods of the panel KSS unit root test with a  Fourier function and the SPSM process are likewise used. The panel  KSS unit root test with a Fourier function considers the problem of  non-linearity and structural changes, and the SPSM process can avoid  the stationary time series from dominating the result-generated bias.  Through a rigorous empirical study, we determine that the housing  price-to-income ratios are stationary in 34 of the 35 cities in China.  Only Xining is non-stationary. The housing price-to-rent ratios are  stationary in 32 of the 35 cities in China. Chengdu, Fuzhou, and  Zhengzhou are non-stationary. Overall, the housing bubbles are not a  serious problem in China at the time.

 

Keywords: Housing Price-to-Income Ratio, Housing Price-to-Rent Ratio, Housing Bubbles, Panel Unit-Root Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
43 Studding of Number of Dataset on Precision of Estimated Saturated Hydraulic Conductivity

Authors: M. Siosemarde, M. Byzedi

Abstract:

Saturated hydraulic conductivity of Soil is an important property in processes involving water and solute flow in soils. Saturated hydraulic conductivity of soil is difficult to measure and can be highly variable, requiring a large number of replicate samples. In this study, 60 sets of soil samples were collected at Saqhez region of Kurdistan province-IRAN. The statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Mean Absolute Error (MAE) were used to evaluation the multiple linear regression models varied with number of dataset. In this study the multiple linear regression models were evaluated when only percentage of sand, silt, and clay content (SSC) were used as inputs, and when SSC and bulk density, Bd, (SSC+Bd) were used as inputs. The R, RMSE, MBE and MAE values of the 50 dataset for method (SSC), were calculated 0.925, 15.29, -1.03 and 12.51 and for method (SSC+Bd), were calculated 0.927, 15.28,-1.11 and 12.92, respectively, for relationship obtained from multiple linear regressions on data. Also the R, RMSE, MBE and MAE values of the 10 dataset for method (SSC), were calculated 0.725, 19.62, - 9.87 and 18.91 and for method (SSC+Bd), were calculated 0.618, 24.69, -17.37 and 22.16, respectively, which shows when number of dataset increase, precision of estimated saturated hydraulic conductivity, increases.

Keywords: dataset, precision, saturated hydraulic conductivity, soil and statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
42 Analog Front End Low Noise Amplifier in 0.18-µm CMOS for Ultrasound Imaging Applications

Authors: Haridas Kuruveettil, Dongning Zhao, Cheong Jia Hao, Minkyu Je

Abstract:

We present the design of Analog front end (AFE) low noise pre-amplifier implemented in a high voltage 0.18-µm CMOS technology for  a three dimensional ultrasound  bio microscope (3D UBM) application. The fabricated chip has 4X16 pre-amplifiers implemented to interface   a 2-D array of    high frequency capacitive micro-machined ultrasound transducers (CMUT). Core AFE cell consists of a high-voltage pulser in the transmit path, and a low-noise transimpedance amplifier in the receive path. Proposed system offers a high image resolution by the use of high frequency CMUTs with associated high performance imaging electronics integrated together.  Performance requirements and the design methods of the high bandwidth transimpedance amplifier are described in the paper. A single cell of transimpedance (TIA) amplifier and the bias circuit occupies a silicon area of 250X380 µm2 and the full chip occupies a total silicon area of 10x6.8 mm².

Keywords: Ultrasound, analog front end, medical imaging, beam forming, biomicroscope, transimpedance gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8195
41 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018

Authors: M. Sitoe, O. Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: Evasion and retention, cross validation, bagging, stacking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134
40 Statically Fused Unbiased Converted Measurements Kalman Filter

Authors: Zhengkun Guo, Yanbin Li, Wenqing Wang, Bo Zou

Abstract:

Active radar and sonar systems often report Doppler measurements in addition to the position measurements such as range and bearing. The tracker can perform better by making full use of the Doppler measurements. However, due to the high nonlinearity of the Doppler measurements with respect to the target state in the Cartesian coordinate systems, those measurements are not always fully exploited. This paper mainly focuses on dealing with the Doppler measurements as well as the position measurements in Polar coordinates. The Statically Fused Converted Position and Doppler Measurements Kalman Filter (SF-CMKF) with additive debiased measurement conversion has been presented. However, the exact compensation for the bias of the measurement conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in the large angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for two-dimensional (Polar-to-Cartesian) tracking are derived, and the SF-CMKF is improved by using those conversion. Monte Carlo simulations are presented to demonstrate the statistic consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF).

Keywords: Measurement conversion, Doppler, Kalman filter, estimation, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 381
39 Simulation of PM10 Source Apportionment at An Urban Site in Southern Taiwan by a Gaussian Trajectory Model

Authors: Chien-Lung Chen, Jeng-Lin Tsai, Feng-Chao Chung, Su-Ching Kuo, Kuo-Hsin Tseng, Pei-Hsuan Kuo, Li-Ying Hsieh, Ying I. Tsai

Abstract:

This study applied the Gaussian trajectory transfer-coefficient model (GTx) to simulate the particulate matter concentrations and the source apportionments at Nanzih Air Quality Monitoring Station in southern Taiwan from November 2007 to February 2008. The correlation coefficient between the observed and the calculated daily PM10 concentrations is 0.5 and the absolute bias of the PM10 concentrations is 24%. The simulated PM10 concentrations matched well with the observed data. Although the emission rate of PM10 was dominated by area sources (58%), the results of source apportionments indicated that the primary sources for PM10 at Nanzih Station were point sources (42%), area sources (20%) and then upwind boundary concentration (14%). The obvious difference of PM10 source apportionment between episode and non-episode days was upwind boundary concentrations which contributed to 20% and 11% PM10 sources, respectively. The gas-particle conversion of secondary aerosol and long range transport played crucial roles on the PM10 contribution to a receptor.

Keywords: back trajectory model, particulate matter, sourceapportionment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
38 Temperature Variation Effects on I-V Characteristics of Cu-Phthalocyanine based OFET

Authors: Q. Zafar, R. Akram, Kh.S. Karimov, T.A. Khan, M. Farooq, M.M. Tahir

Abstract:

In this study we present the effect of elevated temperatures from 300K to 400K on the electrical properties of copper Phthalocyanine (CuPc) based organic field effect transistors (OFET). Thin films of organic semiconductor CuPc (40nm) and semitransparent Al (20nm) were deposited in sequence, by vacuum evaporation on a glass substrate with previously deposited Ag source and drain electrodes with a gap of 40 μm. Under resistive mode of operation, where gate was suspended it was observed that drain current of this organic field effect transistor (OFET) show an increase with temperature. While in grounded gate condition metal (aluminum) – semiconductor (Copper Phthalocyanine) Schottky junction dominated the output characteristics and device showed switching effect from low to high conduction states like Zener diode at higher bias voltages. This threshold voltage for switching effect has been found to be inversely proportional to temperature and shows an abrupt decrease after knee temperature of 360K. Change in dynamic resistance (Rd = dV/dI) with respect to temperature was observed to be -1%/K.

Keywords: Copper Phthalocyanine, Metal-Semiconductor Schottky Junction, Organic Field Effect Transistor, Switching effect, Temperature Sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
37 Application of Extreme Learning Machine Method for Time Series Analysis

Authors: Rampal Singh, S. Balasundaram

Abstract:

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Keywords: Chaotic time series, Extreme learning machine, Generalization performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3531
36 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification

Authors: Ishapathik Das

Abstract:

The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.

Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
35 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
34 Well-Being Inequality Using Superimposing Satisfaction Waves: Heisenberg Uncertainty in Behavioural Economics and Econometrics

Authors: Okay Gunes

Abstract:

In this article, a new method is proposed for the measuring of well-being inequality through a model composed of superimposing satisfaction waves. The displacement of households’ satisfactory state (i.e. satisfaction) is defined in a satisfaction string. The duration of the satisfactory state for a given period is measured in order to determine the relationship between utility and total satisfactory time, itself dependent on the density and tension of each satisfaction string. Thus, individual cardinal total satisfaction values are computed by way of a one-dimensional form for scalar sinusoidal (harmonic) moving wave function, using satisfaction waves with varying amplitudes and frequencies which allow us to measure wellbeing inequality. One advantage to using satisfaction waves is the ability to show that individual utility and consumption amounts would probably not commute; hence, it is impossible to measure or to know simultaneously the values of these observables from the dataset. Thus, we crystallize the problem by using a Heisenberg-type uncertainty resolution for self-adjoint economic operators. We propose to eliminate any estimation bias by correlating the standard deviations of selected economic operators; this is achieved by replacing the aforementioned observed uncertainties with households’ perceived uncertainties (i.e. corrected standard deviations) obtained through the logarithmic psychophysical law proposed by Weber and Fechner.

Keywords: Heisenberg Uncertainty Principle, superimposing satisfaction waves, Weber–Fechner law, well-being inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
33 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, A. Kolmickovs, R. Valdmanis

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3% and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10% increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10% 

Keywords: Biomass, combustion, electrodynamic control, gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
32 Understanding the Experience of the Visually Impaired towards a Multi-Sensorial Architectural Design

Authors: Sarah M. Oteifa, Lobna A. Sherif, Yasser M. Mostafa

Abstract:

Visually impaired people, in their daily lives, face struggles and spatial barriers because the built environment is often designed with an extreme focus on the visual element, causing what is called architectural visual bias or ocularcentrism. The aim of the study is to holistically understand the world of the visually impaired as an attempt to extract the qualities of space that accommodate their needs, and to show the importance of multi-sensory, holistic designs for the blind. Within the framework of existential phenomenology, common themes are reached through "intersubjectivity": experience descriptions by blind people and blind architects, observation of how blind children learn to perceive their surrounding environment, and a personal lived blind-folded experience are analyzed. The extracted themes show how visually impaired people filter out and prioritize tactile (active, passive and dynamic touch), acoustic and olfactory spatial qualities respectively, and how this happened during the personal lived blind folded experience. The themes clarify that haptic and aural inclusive designs are essential to create environments suitable for the visually impaired to empower them towards an independent, safe and efficient life.

Keywords: Visually impaired, architecture, multi-sensory design, architectural ocularcentrism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
31 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
30 Impact of Gate Insulation Material and Thickness on Pocket Implanted MOS Device

Authors: Muhibul Haque Bhuyan

Abstract:

This paper reports on the impact study with the variation of the gate insulation material and thickness on different models of pocket implanted sub-100 nm n-MOS device. The gate materials used here are silicon dioxide (SiO2), aluminum silicate (Al2SiO5), silicon nitride (Si3N4), alumina (Al2O3), hafnium silicate (HfSiO4), tantalum pentoxide (Ta2O5), hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and lanthanum oxide (La2O3) upon a p-type silicon substrate material. The gate insulation thickness was varied from 2.0 nm to 3.5 nm for a 50 nm channel length pocket implanted n-MOSFET. There are several models available for this device. We have studied and simulated threshold voltage model incorporating drain and substrate bias effects, surface potential, inversion layer charge, pinch-off voltage, effective electric field, inversion layer mobility, and subthreshold drain current models based on two linear symmetric pocket doping profiles. We have changed the values of the two parameters, viz. gate insulation material and thickness gradually fixing the other parameter at their typical values. Then we compared and analyzed the simulation results. This study would be helpful for the nano-scaled MOS device designers for various applications to predict the device behavior.

Keywords: Linear symmetric pocket profile, pocket implanted n-MOS Device, model, impact of gate material, insulator thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394
29 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Authors: M. Govindarajan, R. M.Chandrasekaran

Abstract:

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
28 Patients’ Perceptions of Receiving a Diagnosis of a Hematological Malignancy, Following the SPIKES Protocol

Authors: L. Dixon, D. Gavani

Abstract:

Objective: Sharing devastating news with patients is often considered the most difficult task of doctors. This study aimed to explore patients’ perceptions of receiving bad news including which features improve the experience and which areas need refining. Methods: A questionnaire was written based on the steps of the SPIKES model for breaking bad new. 20 patients receiving treatment for a hematological malignancy completed the questionnaire. Results: Overall, the results are promising as most patients praised their consultation. ‘Poor’ was more commonly rated by women and participants aged 45-64. The main differences between the ‘excellent’ and ‘poor’ consultations include the doctor’s sensitivity and checking the patients’ understanding. Only 35% of patients were asked their existing knowledge and 85% of consultations failed to discuss the impact of the diagnosis on daily life. Conclusion: This study agreed with the consensus of existing literature. The commended aspects include consultation set-up and information given. Areas patients felt needed improvement include doctors determining the patient’s existing knowledge and checking new information has been understood. Doctors should also explore how the diagnosis will affect the patient’s life. With a poorer prognosis, doctors should work on conveying appropriate hope. The study was limited by a small sample size and potential recall bias.

Keywords: Communication, diagnosis, hematology, patients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
27 An Investigation on the Accuracy of Nonlinear Static Procedures for Seismic Evaluation of Buckling-restrained Braced Frames

Authors: An Hong Nguyen, Chatpan Chintanapakdee, Toshiro Hayashikawa

Abstract:

Presented herein is an assessment of current nonlinear static procedures (NSPs) for seismic evaluation of bucklingrestrained braced frames (BRBFs) which have become a favorable lateral-force resisting system for earthquake resistant buildings. The bias and accuracy of modal, improved modal pushover analysis (MPA, IMPA) and mass proportional pushover (MPP) procedures are comparatively investigated when they are applied to BRBF buildings subjected to two sets of strong ground motions. The assessment is based on a comparison of seismic displacement demands such as target roof displacements, peak floor/roof displacements and inter-story drifts. The NSP estimates are compared to 'exact' results from nonlinear response history analysis (NLRHA). The response statistics presented show that the MPP procedure tends to significantly overestimate seismic demands of lower stories of tall buildings considered in this study while MPA and IMPA procedures provide reasonably accurate results in estimating maximum inter-story drift over all stories of studied BRBF systems.

Keywords: Buckling-restrained braced frames, nonlinearresponse history analysis, nonlinear static procedure, seismicdemands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
26 Social Influences on Americans' Mask-Wearing Behavior during COVID-19

Authors: Ruoya Huang, Ruoxian Huang, Edgar Huang

Abstract:

Based on a convenience sample of 2,092 participants from across all 50 states of the United States, a survey was conducted to explore Americans’ mask-wearing behaviors during COVID-19 according to their political convictions, religious beliefs, and ethnic cultures from late July to early September, 2020. The purpose of the study is to provide evidential support for government policymaking so as to drive up more effective public policies by taking into consideration the variance in these social factors. It was found that the respondents’ party affiliation or preference, religious belief, and ethnicity, in addition to their health condition, gender, level of concern of contracting COVID-19, all affected their mask-wearing habits both in March, the initial coronavirus outbreak stage, and in August, when mask-wearing had been made mandatory by state governments. The study concludes that pandemic awareness campaigns must be run among all citizens, especially among African Americans, Muslims, and Republicans, who have the lowest rates of wearing masks, in order to protect themselves and others. It is recommended that complementary cognitive bias awareness programs should be implemented in non-Black and non-Muslim communities to eliminate social concerns that deter them from wearing masks.

Keywords: COVID-19 pandemic, ethnicity, mask-wearing, policymaking implications, political affiliations, religious beliefs, United States.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537
25 Air Pollution and Respiratory-Related Restricted Activity Days in Tunisia

Authors: Mokhtar Kouki Inès Rekik

Abstract:

This paper focuses on the assessment of the air pollution and morbidity relationship in Tunisia. Air pollution is measured by ozone air concentration and the morbidity is measured by the number of respiratory-related restricted activity days during the 2-week period prior to the interview. Socioeconomic data are also collected in order to adjust for any confounding covariates. Our sample is composed by 407 Tunisian respondents; 44.7% are women, the average age is 35.2, near 69% are living in a house built after 1980, and 27.8% have reported at least one day of respiratory-related restricted activity. The model consists on the regression of the number of respiratory-related restricted activity days on the air quality measure and the socioeconomic covariates. In order to correct for zero-inflation and heterogeneity, we estimate several models (Poisson, negative binomial, zero inflated Poisson, Poisson hurdle, negative binomial hurdle and finite mixture Poisson models). Bootstrapping and post-stratification techniques are used in order to correct for any sample bias. According to the Akaike information criteria, the hurdle negative binomial model has the greatest goodness of fit. The main result indicates that, after adjusting for socioeconomic data, the ozone concentration increases the probability of positive number of restricted activity days.

Keywords: Bootstrapping, hurdle negbin model, overdispersion, ozone concentration, respiratory-related restricted activity days.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
24 Modeling and Experimental Studies on Solar Crop Dryer Coupled with Reversed Absorber Type Solar Air Heater

Authors: Vijay R. Khawale, Shashank B. Thakare

Abstract:

The experiment was carried out to study the performance of solar crop dryer coupled with reversed absorber type solar air heater (SD2). Excel software is used to analyse the raw data obtained from the drying experiment to develop a model. An attempt is made in this paper to correlate the collector efficiency, dryer efficiency and pick-up efficiency. All these efficiencies are dependent on the parameters such as solar flux, ambient temperature, collector outlet temperature and moisture content. The simulation equation was developed to predict the values of collector efficiency. The parameters a, n and drying constant k were determined from a plot of curve using a drying models. Experimental data of drying red chili in conventional solar dryer and solar dryer coupled with reversed absorber solar air heater was compared by fitting with three drying models. The moisture content will be rapidly reduced in solar dryer with reversed absorber due to higher drying temperatures. The best fit model was selected to describe the drying behavior of red chili. For SD2 the values of the coefficient of determination (R2=0.997), mean bias error (MBE=0.00026) and root mean square error (RMSE=0.016) were used to determine the goodness or the quality of the fit. Pages model showed a better fit to drying red chili among Newton model and Henderson & Pabis model.

Keywords: Solar dryer, red chili, reversed absorber, reflector, Buckingham pi theorem, drying model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
23 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions

Authors: Abdelgawad, Salah El-Tahawy

Abstract:

This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.

Keywords: LSD, climate factors, econometric models, Nile Delta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
22 Water Immersion Recovery for Swimmers in Hot Environments

Authors: Thanura Abeywardena

Abstract:

This study recognized the effectiveness of cold-water immersion recovery post short-term exhaustive exercise. The purpose of this study was to understand if 16-20 °C of cold-water immersion would be beneficial in a tropical environment to achieve an optimal recovery in sprint swim performance in comparison to 10-15 °C of water immersion. Two 100 m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25 m swimming pool with full body head out horizontal water immersions of 10-15 °C, 16-20 °C and 29-32 °C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. 10 well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan nationals swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p < 0.05) suggested performance time, BLa and HR had no significant differences between the three conditions after the second sprint, however RPE was significantly different with p = 0.034 between 10-15 °C and 16-20 °C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors however the 16-20 °C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have been possibly fully recovered before sprint 2 invalidating the physiological effect of recovery.

Keywords: Hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268
21 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
20 De-Securitizing Identity: Narrative (In)Consistency in Periods of Transition

Authors: Katerina Antoniou

Abstract:

When examining conflicts around the world, it is evident that the majority of intractable conflicts are steeped in identity. Identity seems to be not only a causal variable for conflict, but also a catalytic parameter for the process of reconciliation that follows ceasefire. This paper focuses on the process of identity securitization that occurs between rival groups of heterogeneous collective identities – ethnic, national or religious – as well as on the relationship between identity securitization and the ability of the groups involved to reconcile. Are securitized identities obstacles to the process of reconciliation, able to hinder any prospects of peace? If the level to which an identity is securitized is catalytic to a conflict’s discourse and settlement, then which factors act as indicators of identity de-securitization? The level of an in-group’s identity securitization can be estimated through a number of indicators, one of which is narrative. The stories, views and stances each in-group adopts in relation to its history of conflict and relation with their rival out-group can clarify whether that specific in-group feels victimized and threatened or safe and ready to reconcile. Accordingly, this study discusses identity securitization through narrative in relation to intractable conflicts. Are there conflicts around the world that, despite having been identified as intractable, stagnated or insoluble, show signs of identity de-securitization through narrative? This inquiry uses the case of the Cyprus conflict and its partitioned societies to present official narratives from the two communities and assess whether these narratives have transformed, indicating a less securitized in-group identity for the Greek and Turkish Cypriots. Specifically, the study compares the official historical overviews presented by each community’s Ministry of Foreign Affairs website and discusses the extent to which the two official narratives present a securitized collective identity. In addition, the study will observe whether official stances by the two communities – as adopted by community leaders – have transformed to depict less securitization over time. Additionally, the leaders’ reflection of popular opinion is evaluated through recent opinion polls from each community. Cyprus is currently experiencing renewed optimism for reunification, with the leaders of its two communities engaging in rigorous negotiations, and with rumors calling for a potential referendum for reunification to be taking place even as early as within 2016. Although leaders’ have shown a shift in their rhetoric and have moved away from narratives of victimization, this is not the case for the official narratives used by their respective ministries of foreign affairs. The study’s findings explore whether this narrative inconsistency proves that Cyprus is transitioning towards reunification, or whether the leaders are risking sending a securitized population to the polls to reject a potential reunification. More broadly, this study suggests that in the event that intractable conflicts might be moving towards viable peace, in-group narratives--official narratives in particular--can act as indicators of the extent to which rival entities have managed to reconcile.

Keywords: Conflict, Identity, Narrative, Reconciliation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
19 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: Audit fee, heteroscedasticity, Lagrange multiplier test, periodicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
18 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
17 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method

Authors: Amira Mabrouk, Chokri Abdennadher

Abstract:

The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.

Keywords: Willingness to pay, value of time, contingent valuation, time value, city toll, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
16 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques

Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson

Abstract:

Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).

Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650