Search results for: kernel density estimation
2062 A Novel Estimation Method for Integer Frequency Offset in Wireless OFDM Systems
Authors: Taeung Yoon, Youngpo Lee, Chonghan Song, Na Young Ha, Seokho Yoon
Abstract:
Ren et al. presented an efficient carrier frequency offset (CFO) estimation method for orthogonal frequency division multiplexing (OFDM), which has an estimation range as large as the bandwidth of the OFDM signal and achieves high accuracy without any constraint on the structure of the training sequence. However, its detection probability of the integer frequency offset (IFO) rapidly varies according to the fractional frequency offset (FFO) change. In this paper, we first analyze the Ren-s method and define two criteria suitable for detection of IFO. Then, we propose a novel method for the IFO estimation based on the maximum-likelihood (ML) principle and the detection criteria defined in this paper. The simulation results demonstrate that the proposed method outperforms the Ren-s method in terms of the IFO detection probability irrespective of a value of the FFO.Keywords: Orthogonal frequency division multiplexing, integer frequency offset, estimation, training symbol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24522061 Stochastic Subspace Modelling of Turbulence
Authors: M. T. Sichani, B. J. Pedersen, S. R. K. Nielsen
Abstract:
Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.Keywords: Turbulence, wind turbine, complex coherence, state space modelling, ARMA modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16462060 Blind Channel Estimation Based on URV Decomposition Technique for Uplink of MC-CDMA
Authors: Pradya Pornnimitkul, Suwich Kunaruttanapruk, Bamrung Tau Sieskul, Somchai Jitapunkul
Abstract:
In this paper, we investigate a blind channel estimation method for Multi-carrier CDMA systems that use a subspace decomposition technique. This technique exploits the orthogonality property between the noise subspace and the received user codes to obtain channel of each user. In the past we used Singular Value Decomposition (SVD) technique but SVD have most computational complexity so in this paper use a new algorithm called URV Decomposition, which serve as an intermediary between the QR decomposition and SVD, replaced in SVD technique to track the noise space of the received data. Because of the URV decomposition has almost the same estimation performance as the SVD, but has less computational complexity.
Keywords: Channel estimation, MC-CDMA, SVD, URV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17802059 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6132058 Electric Load Forecasting Using Genetic Based Algorithm, Optimal Filter Estimator and Least Error Squares Technique: Comparative Study
Authors: Khaled M. EL-Naggar, Khaled A. AL-Rumaih
Abstract:
This paper presents performance comparison of three estimation techniques used for peak load forecasting in power systems. The three optimum estimation techniques are, genetic algorithms (GA), least error squares (LS) and, least absolute value filtering (LAVF). The problem is formulated as an estimation problem. Different forecasting models are considered. Actual recorded data is used to perform the study. The performance of the above three optimal estimation techniques is examined. Advantages of each algorithms are reported and discussed.
Keywords: Forecasting, Least error squares, Least absolute Value, Genetic algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27232057 Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18292056 Exponentially Weighted Simultaneous Estimation of Several Quantiles
Authors: Valeriy Naumov, Olli Martikainen
Abstract:
In this paper we propose new method for simultaneous generating multiple quantiles corresponding to given probability levels from data streams and massive data sets. This method provides a basis for development of single-pass low-storage quantile estimation algorithms, which differ in complexity, storage requirement and accuracy. We demonstrate that such algorithms may perform well even for heavy-tailed data.Keywords: Quantile estimation, data stream, heavy-taileddistribution, tail index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15332055 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction
Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz
Abstract:
This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19062054 AC Signals Estimation from Irregular Samples
Authors: Predrag B. Petrović
Abstract:
The paper deals with the estimation of amplitude and phase of an analogue multi-harmonic band-limited signal from irregularly spaced sampling values. To this end, assuming the signal fundamental frequency is known in advance (i.e., estimated at an independent stage), a complexity-reduced algorithm for signal reconstruction in time domain is proposed. The reduction in complexity is achieved owing to completely new analytical and summarized expressions that enable a quick estimation at a low numerical error. The proposed algorithm for the calculation of the unknown parameters requires O((2M+1)2) flops, while the straightforward solution of the obtained equations takes O((2M+1)3) flops (M is the number of the harmonic components). It is applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The proposed method of processing can be used for precise RMS measurements (for power and energy) of a periodic signal based on the presented signal reconstruction. The paper investigates the errors related to the signal parameter estimation, and there is a computer simulation that demonstrates the accuracy of these algorithms.
Keywords: Band-limited signals, Fourier coefficient estimation, analytical solutions, signal reconstruction, time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492053 Sliding-Mode Control of a Permanent-Magnet Synchronous Motor with Uncertainty Estimation
Authors: Markus Reichhartinger, Martin Horn
Abstract:
In this paper, the application of sliding-mode control to a permanent-magnet synchronous motor (PMSM) is presented. The control design is based on a generic mathematical model of the motor. Some dynamics of the motor and of the power amplification stage remain unmodelled. This model uncertainty is estimated in realtime. The estimation is based on the differentiation of measured signals using the ideas of robust exact differentiator (RED). The control law is implemented on an industrial servo drive. Simulations and experimental results are presented and compared to the same control strategy without uncertainty estimation. It turns out that the proposed concept is superior to the same control strategy without uncertainty estimation especially in the case of non-smooth reference signals.
Keywords: sliding-mode control, Permanent-magnet synchronous motor, uncertainty estimation, robust exact differentiator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23392052 Accelerating Sparse Matrix Vector Multiplication on Many-Core GPUs
Authors: Weizhi Xu, Zhiyong Liu, Dongrui Fan, Shuai Jiao, Xiaochun Ye, Fenglong Song, Chenggang Yan
Abstract:
Many-core GPUs provide high computing ability and substantial bandwidth; however, optimizing irregular applications like SpMV on GPUs becomes a difficult but meaningful task. In this paper, we propose a novel method to improve the performance of SpMV on GPUs. A new storage format called HYB-R is proposed to exploit GPU architecture more efficiently. The COO portion of the matrix is partitioned recursively into a ELL portion and a COO portion in the process of creating HYB-R format to ensure that there are as many non-zeros as possible in ELL format. The method of partitioning the matrix is an important problem for HYB-R kernel, so we also try to tune the parameters to partition the matrix for higher performance. Experimental results show that our method can get better performance than the fastest kernel (HYB) in NVIDIA-s SpMV library with as high as 17% speedup.Keywords: GPU, HYB-R, Many-core, Performance Tuning, SpMV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19872051 A Modified Genetic Based Technique for Solving the Power System State Estimation Problem
Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy
Abstract:
Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.Keywords: Genetic algorithms, ill-conditioning, state estimation, weighted least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17132050 Motion Area Estimated Motion Estimation with Triplet Search Patterns for H.264/AVC
Authors: T. Song, T. Shimamoto
Abstract:
In this paper a fast motion estimation method for H.264/AVC named Triplet Search Motion Estimation (TS-ME) is proposed. Similar to some of the traditional fast motion estimation methods and their improved proposals which restrict the search points only to some selected candidates to decrease the computation complexity, proposed algorithm separate the motion search process to several steps but with some new features. First, proposed algorithm try to search the real motion area using proposed triplet patterns instead of some selected search points to avoid dropping into the local minimum. Then, in the localized motion area a novel 3-step motion search algorithm is performed. Proposed search patterns are categorized into three rings on the basis of the distance from the search center. These three rings are adaptively selected by referencing the surrounding motion vectors to early terminate the motion search process. On the other hand, computation reduction for sub pixel motion search is also discussed considering the appearance probability of the sub pixel motion vector. From the simulation results, motion estimation speed improved by a factor of up to 38 when using proposed algorithm than that of the reference software of H.264/AVC with ignorable picture quality loss.Keywords: Motion estimation, VLSI, image processing, search patterns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13322049 Effective Density for the Classification of Transport Activity Centers
Authors: Dubbale Daniel A., Tsutsumi J.
Abstract:
This research work takes a different approach in the discussion of urban form impacts on transport planning and auto dependency. Concentrated density represented by effective density explains auto dependency better than the conventional density and it is proved to be a realistic density representative for the urban transportation analysis. Model analysis reveals that effective density is influenced by the shopping accessibility index as well as job density factor. It is also combined with the job access variable to classify four levels of Transport Activity Centers (TACs) in Okinawa, Japan. Trip attraction capacity and levels of the newly classified TACs was found agreeable with the amount of daily trips attracted to each center. The trip attraction data set was drawn from a 2007 Okinawa personal trip survey. This research suggests a planning methodology which guides logical transport supply routes and concentrated local development schemes.Keywords: Effective density, urban form, auto-dependency, transport activity centers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15152048 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5392047 Is It Important to Measure the Volumetric Mass Density of Nanofluids?
Authors: Z. Haddad, C. Abid, O. Rahli, O. Margeat, W. Dachraoui, A. Mataoui
Abstract:
The present study aims to measure the volumetric mass density of NiPd-heptane nanofluids synthesized using a one step method known as thermal decomposition of metal-surfactant complexes. The particle concentration is up to 7.55g/l and the temperature range of the experiment is from 20°C to 50°C. The measured values were compared with the mixture theory and good agreement between the theoretical equation and measurement were obtained. Moreover, the available nanofluids volumetric mass density data in the literature is reviewed.
Keywords: NiPd nanoparticles, nanofluids, volumetric mass density, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26672046 Approximations to the Distribution of the Sample Correlation Coefficient
Authors: John N. Haddad, Serge B. Provost
Abstract:
Given a bivariate normal sample of correlated variables, (Xi, Yi), i = 1, . . . , n, an alternative estimator of Pearson’s correlation coefficient is obtained in terms of the ranges, |Xi − Yi|. An approximate confidence interval for ρX,Y is then derived, and a simulation study reveals that the resulting coverage probabilities are in close agreement with the set confidence levels. As well, a new approximant is provided for the density function of R, the sample correlation coefficient. A mixture involving the proposed approximate density of R, denoted by hR(r), and a density function determined from a known approximation due to R. A. Fisher is shown to accurately approximate the distribution of R. Finally, nearly exact density approximants are obtained on adjusting hR(r) by a 7th degree polynomial.Keywords: Sample correlation coefficient, density approximation, confidence intervals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22702045 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.
Keywords: Binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13742044 Theoretical Density Study of Winding Yarns on Spool
Authors: Bachir Chemani, Rachid Halfaoui
Abstract:
The aim of work is to define the distribution density of winding yarn on cylindrical and conical bobbins. It is known that parallel winding gives greater density and more regular distribution, but the unwinding of yarn is much more difficult for following process. The conical spool has an enormous advantage during unwinding and may contain a large amount of yarns, but the density distribution is not regular because of difference in diameters. The variation of specific density over the reel height is explained generally by the sudden change of winding speed due to direction movement variation of yarn. We determined the conditions of uniform winding and developed a calculate model to the change of the specific density of winding wire over entire spool height.
Keywords: Textile, cylindrical bobbins, conical bobbins, parallel winding, cross winding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36012043 Software Engineering Inspired Cost Estimation for Process Modelling
Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller
Abstract:
Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development process and the process of process modelling which is a phase of the Business Process Management life-cycle.Keywords: Cost Estimation, Effort Estimation, Process Modelling, Business Process Management, COCOMO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22942042 Parametric Cost Estimating Relationships for Design Effort Estimation
Authors: Adil Salam, Nadia Bhuiyan, Gerard J. Gouw
Abstract:
The Canadian aerospace industry faces many challenges. One of them is the difficulty in estimating costs. In particular, the design effort required in a project impacts resource requirements and lead-time, and consequently the final cost. This paper presents the findings of a case study conducted for recognized global leader in the design and manufacturing of aircraft engines. The study models parametric cost estimation relationships to estimate the design effort of integrated blade-rotor low-pressure compressor fans. Several effort drivers are selected to model the relationship. Comparative analyses of three types of models are conducted. The model with the best accuracy and significance in design estimation is retained.
Keywords: Effort estimation, design, aerospace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25782041 State Estimation Solution with Optimal Allocation of Phasor Measurement Units Considering Zero Injection Bus Modeling
Authors: M. Ravindra, R. Srinivasa Rao, V. Shanmukha Naga Raju
Abstract:
This paper presents state estimation with Phasor Measurement Unit (PMU) allocation to obtain complete observability of network. A matrix is designed with modeling of zero injection constraints to minimize PMU allocations. State estimation algorithm is developed with optimal allocation of PMUs to find accurate states of network. The incorporation of PMU into traditional state estimation process improves accuracy and computational performance for large power systems. The nonlinearity integrated with zero injection (ZI) constraints is remodeled to linear frame to optimize number of PMUs. The problem of optimal PMU allocation is regarded with modeling of ZI constraints, PMU loss or line outage, cost factor and redundant measurements. The proposed state estimation with optimal PMU allocation has been compared with traditional state estimation process to show its importance. MATLAB programming on IEEE 14, 30, 57, and 118 bus networks is implemented out by Binary Integer Programming (BIP) method and compared with other methods to show its effectiveness.
Keywords: Observability, phasor measurement units, synchrophasors, SCADA measurements, zero injection bus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8072040 Robust Coherent Noise Suppression by Point Estimation of the Cauchy Location Parameter
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
This paper introduces a new point estimation algorithm, with particular focus on coherent noise suppression, given several measurements of the device under test where it is assumed that 1) the noise is first-order stationery and 2) the device under test is linear and time-invariant. The algorithm exploits the robustness of the Pitman estimator of the Cauchy location parameter through the initial scaling of the test signal by a centred Gaussian variable of predetermined variance. It is illustrated through mathematical derivations and simulation results that the proposed algorithm is more accurate and consistently robust to outliers for different tailed density functions than the conventional methods of sample mean (coherent averaging technique) and sample median search.
Keywords: Central limit theorem, Fisher-Cramer Rao, gamma function, Pitman estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19222039 Briquetting of Metal Chips by Controlled Impact: Experimental Study
Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov
Abstract:
For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.Keywords: Briquetting, chips briquetting, impact briquetting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14242038 Robust UKF Insensitive to Measurement Faults for Pico Satellite Attitude Estimation
Authors: Halil Ersin Soken, Chingiz Hajiyev
Abstract:
In the normal operation conditions of a pico satellite, conventional Unscented Kalman Filter (UKF) gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study, introduces Robust Unscented Kalman Filter (RUKF) algorithms with the filter gain correction for the case of measurement malfunctions. By the use of defined variables named as measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight and the estimations are corrected without affecting the characteristic of the accurate ones. Two different RUKF algorithms, one with single scale factor and one with multiple scale factors, are proposed and applied for the attitude estimation process of a pico satellite. The results of these algorithms are compared for different types of measurement faults in different estimation scenarios and recommendations about their applications are given.Keywords: attitude algorithms, Kalman filters, robustestimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16242037 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8582036 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques
Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah
Abstract:
Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or underestimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improve accuracies. This requires standard measurement methods to be structured in ontological and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.
Keywords: BIM, Construction projects, Cost estimation, NRM, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44422035 Array Signal Processing: DOA Estimation for Missing Sensors
Authors: Lalita Gupta, R. P. Singh
Abstract:
Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.
Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30202034 Spatial Mapping of Dengue Incidence: A Case Study in Hulu Langat District, Selangor, Malaysia
Authors: Er, A. C., Rosli, M. H., Asmahani A., Mohamad Naim M. R., Harsuzilawati M.
Abstract:
Dengue is a mosquito-borne infection that has peaked to an alarming rate in recent decades. It can be found in tropical and sub-tropical climate. In Malaysia, dengue has been declared as one of the national health threat to the public. This study aimed to map the spatial distributions of dengue cases in the district of Hulu Langat, Selangor via a combination of Geographic Information System (GIS) and spatial statistic tools. Data related to dengue was gathered from the various government health agencies. The location of dengue cases was geocoded using a handheld GPS Juno SB Trimble. A total of 197 dengue cases occurring in 2003 were used in this study. Those data then was aggregated into sub-district level and then converted into GIS format. The study also used population or demographic data as well as the boundary of Hulu Langat. To assess the spatial distribution of dengue cases three spatial statistics method (Moran-s I, average nearest neighborhood (ANN) and kernel density estimation) were applied together with spatial analysis in the GIS environment. Those three indices were used to analyze the spatial distribution and average distance of dengue incidence and to locate the hot spot of dengue cases. The results indicated that the dengue cases was clustered (p < 0.01) when analyze using Moran-s I with z scores 5.03. The results from ANN analysis showed that the average nearest neighbor ratio is less than 1 which is 0.518755 (p < 0.0001). From this result, we can expect the dengue cases pattern in Hulu Langat district is exhibiting a cluster pattern. The z-score for dengue incidence within the district is -13.0525 (p < 0.0001). It was also found that the significant spatial autocorrelation of dengue incidences occurs at an average distance of 380.81 meters (p < 0.0001). Several locations especially residential area also had been identified as the hot spots of dengue cases in the district.
Keywords: Dengue, geographic information system (GIS), spatial analysis, spatial statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53682033 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577