Search results for: Magnetic field
2561 Optimal Controller Design for Linear Magnetic Levitation Rail System
Authors: Tooraj Hakim Elahi, Abdolamir Nekoubin
Abstract:
In many applications, magnetic suspension systems are required to operate over large variations in air gap. As a result, the nonlinearities inherent in most types of suspensions have a significant impact on performance. Specifically, it may be difficult to design a linear controller which gives satisfactory performance, stability, and disturbance rejection over a wide range of operating points. in this paper an optimal controller based on discontinuous mathematical model of the system for an electromagnetic suspension system which is applied in magnetic trains has been designed . Simulations show that the new controller can adapt well to the variance of suspension mass and gap, and keep its dynamic performance, thus it is superior to the classic controller.Keywords: Magnetic Levitation, optimal controller, mass and gap
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32132560 A DNA-Based Nanobiosensor for the Rapid Detection of the Dengue Virus in Mosquito
Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja
Abstract:
This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe– DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/μl.Keywords: Dengue, magnetic nanoparticles, mosquito, nanobiosensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28772559 Proton and Neutron Magnetic Moments Based On Bag Models
Authors: G. R. Boroun, R. Harami
Abstract:
Using form factors of the proton and the neutron for different of Q2, bag radius of the proton and the neutron can be obtained based on bag models. Then using static bag radius, magnetic moments of the proton and the neutron can be obtained and compared with other results.
Keywords: MIT bag model, proton and neutron, magnetic moment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16192558 Understanding the Behavior of Superconductors by Analyzing Permittivity
Authors: Fred Lacy
Abstract:
A superconductor has the ability to conduct electricity perfectly and exclude magnetic fields from its interior. In order to understand electromagnetic characteristics of superconductors, their material properties need to be examined. To facilitate this understanding, a theoretical model based on concepts of electromagnetics is presented to explain the electrical and magnetic properties of superconductors. The permittivity response is the key aspect of the model and it describes the electrical resistance response and why it vanishes at the material’s critical temperature. The model also explains the behavior of magnetic fields and why they cannot exist inside superconducting materials. The theoretical concepts and equations associated with this model are used to demonstrate that they are sufficient in describing the behavior of both type I and type II (or high temperature) superconductors. This model is also able to explain why superconductors behave differently than perfect conductors. As a result, examining the permittivity response and understanding electromagnetic field theory provides insight into the major aspects associated with superconducting materials.
Keywords: Ampere’s law, permittivity, permeability, resistivity, Schrödinger wave equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6992557 Ab initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds
Authors: Abada Ahmed, Hiadsi Said, Ouahrani Tarik, Amrani Bouhalouane, Amara Kadda
Abstract:
Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of full Heusler alloys Co2ZrGe and Co2NbB. These compounds are predicted to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 B per formula unit, well consistent with the Slater-Pauling rule. Calculations show that both the alloys have an indirect band gaps, in the minority-spin channel of density of states (DOS), with values of 0.58 eV and 0.47 eV for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half-metallicity is found to be relatively robust against volume changes. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronic field.
Keywords: Electronic properties, full Heusler alloys, halfmetallic ferromagnets, magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25142556 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method
Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda
Abstract:
The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.Keywords: Non-isothermal wedge, thermal radiation, nanofluid, magnetic field, Soret and Dufour effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12792555 Electrical Impedance Imaging Using Eddy Current
Authors: A. Ambia, T. Takemae, Y. Kosugi, M. Hongo
Abstract:
Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.Keywords: Back projection algorithm, electrical impedancetomography, eddy current, magnetic inductance tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17012554 Composition Dependent Formation of Sputtered Co-Cu Film on Cr Under-Layer
Authors: Watcharee Rattanasakulthong, Pichai Sirisangsawang, Supree Pinitsoontorn
Abstract:
Sputtered CoxCu100-x films with the different compositions of x = 57.7, 45.8, 25.5, 13.8, 8.8, 7.5 and 1.8 were deposited on Cr under-layer by RF-sputtering. SEM result reveals that the averaged thickness of Co-Cu film and Cr under-layer are 92 nm and 22nm, respectively. All Co-Cu films are composed of Co (FCC) and Cu (FCC) phases in (111) directions on BCC-Cr (110) under-layers. Magnetic properties, surface roughness and morphology of Co-Cu films are dependent on the film composition. The maximum and minimum surface roughness of 3.24 and 1.16nm are observed on the Co7.5Cu92.5 and Co45.8Cu54.2films, respectively. It can be described that the variance of surface roughness of the film because of the difference of the agglomeration rate of Co and Cu atoms on Cr under-layer. The Co57.5Cu42.3, Co45.8Cu54.2 and Co25.5Cu74.5 films shows the ferromagnetic phase whereas the rest of the film exhibits the paramagnetic phase at room temperature. The saturation magnetization, remnant magnetization and coercive field of Co-Cu films on Cr under-layer are slightly increased with increasing the Co composition. It can be concluded that the required magnetic properties and surface roughness of the Co-Cu film can be adapted by the adjustment of the film composition.
Keywords: Co-Cu films, Under-layers, Sputtering, Surface roughness, Magnetic properties, Atomic force microscopy (AFM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19502553 Simulation of the Finite Difference Time Domain in Two Dimension
Abstract:
The finite-difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetic. This paper describes the design of two-dimensional (2D) FDTD simulation software for transverse magnetic (TM) polarization using Berenger's split-field perfectly matched layer (PML) formulation. The software is developed using Matlab programming language. Numerical examples validate the software.Keywords: Finite difference time domain (FDTD) method, perfectly matched layer (PML), split-filed formulation, transverse magnetic (TM) polarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56302552 Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine
Authors: B. Ladghem Chikouche
Abstract:
The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses.Keywords: Exact analytical calculation, finite-element method, magnetic field distribution, permanent magnet machines performance, stator slot wedges permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20172551 Synthesis of Sterile and Pyrogen Free Biogenic Magnetic Nanoparticles: Biotechnological Potential of Magnetotactic Bacteria for Production of Nanomaterials
Authors: Saeid Ghorbanzadeh-Mashkani, Parisa Tajer-Mohammad-Ghazvini, Ahmad Nozad-Golikand, Rouha Kasra-Kermanshahi, Mohammad-Reza Davarpanah
Abstract:
Today, biogenic magnetite nanoparticles among magnetic nanoparticles have unique attracted attention because of their magnetic characteristics and potential applications in various fields such as therapeutic and diagnostic. A well known example of these biogenic nanoparticles is magnetosomes of magnetotactic bacteria. In this research, we used two different types of technique for the isolation and purification of magnetosome nanoparticles from the isolated magnetotactic bacterial cells, heat-alkaline treatment and sonication. Also we evaluated pyrogen content and sterility of synthesized the isolated individual magnetosome by the Limulus Amoebocyte Lysate test and direct impedimetric method respectively.Keywords: Biogenic magnetic nanoparticles, Magnetosome, Magnetotactic bacteria, Nanobiotechnology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29102550 MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption
Authors: G.Ashwini, A.T.Eswara
Abstract:
This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.Keywords: Heat generation / absorption, MHD Falkner- Skan flow, skin friction and heat transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22512549 Pre-beneficiation of Low Grade Diasporic Bauxite Ore by Reduction Roasting
Authors: K. Yılmaz, B. Birol, M. N. Sarıdede, E. Yiğit
Abstract:
A bauxite ore can be utilized in Bayer Process, if the mass ratio of Al2O3 to SiO2 is greater than 10. Otherwise, its FexOy and SiO2 content should be removed. On the other hand, removal of TiO2 from the bauxite ore would be beneficial because of both lowering the red mud residue and obtaining a valuable raw material containing TiO2 mineral. In this study, the low grade diasporic bauxite ore of Yalvaç, Isparta, Turkey was roasted under reducing atmosphere and subjected to magnetic separation. According to the experimental results, 800°C for reduction temperature and 20000 Gauss of magnetic intensity were found to be the optimum parameters for removal of iron oxide and rutile from the nonmagnetic ore. On the other hand, 600°C and 5000 Gauss were determined to be the optimum parameters for removal of silica from the non-magnetic ore.Keywords: Low grade diasporic bauxite, magnetic separation, reduction roasting, separation index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32372548 Low Complexity Regular LDPC codes for Magnetic Storage Devices
Authors: Gabofetswe Malema, Michael Liebelt
Abstract:
LDPC codes could be used in magnetic storage devices because of their better decoding performance compared to other error correction codes. However, their hardware implementation results in large and complex decoders. This one of the main obstacles the decoders to be incorporated in magnetic storage devices. We construct small high girth and rate 2 columnweight codes from cage graphs. Though these codes have low performance compared to higher column weight codes, they are easier to implement. The ease of implementation makes them more suitable for applications such as magnetic recording. Cages are the smallest known regular distance graphs, which give us the smallest known column-weight 2 codes given the size, girth and rate of the code.
Keywords: Structured LDPC codes, cage graphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21182547 A Fuzzy System to Analyze SIVD Diseases Using the Transcranial Magnetic Stimulation
Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana
Abstract:
The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia (SIVD) and to measure the effect of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.
Keywords: TMS, EMG, fuzzy logic, transcranial magnetic stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14132546 A Green Chemical Technique for the Synthesis of Magnetic Nanoparticles by Magnetotactic Bacteria
Authors: Parisa Tajer-Mohammad-Ghazvini, Rouha Kasra-Kermanshahi, Ahmad Nozad-Golikand, Majid Sadeghizadeh
Abstract:
Bacterial magnetic nanoparticles have great useful potential in biotechnological and biomedical applications. In this study, a liquid growth medium was modified for cultivation a fastidious magnetotactic bacterium that has been isolated from Anzali lagoon, Iran in our previous research. These modifications include change in vitamin, mineral, carbon sources and etcetera. In our experience, the serum bottles and designed air-tight laboratory bottles were used to create microaerobic conditions in order to development of a method for scale-up experiment. This information may serve as a guide to green chemistry based biological protocols for the synthesis of magnetic nanoparticles with control over the chemical composition, morphology and size.Keywords: Green chemistry, Magnetosome, Magnetotactic bacteria, Magnetic nanoparticles, Nano-Biotechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40492545 Explicit Feedback Linearization of Magnetic Levitation System
Authors: Bhawna Tandon, Shiv Narayan, Jagdish Kumar
Abstract:
This study proposes the transformation of nonlinear Magnetic Levitation System into linear one, via state and feedback transformations using explicit algorithm. This algorithm allows computing explicitly the linearizing state coordinates and feedback for any nonlinear control system, which is feedback linearizable, without solving the Partial Differential Equations. The algorithm is performed using a maximum of N-1 steps where N being the dimension of the system.
Keywords: Explicit Algorithm, Feedback Linearization, Nonlinear control, Magnetic Levitation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29812544 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water
Authors: Moosa Mazloom, Hojjat Hatami
Abstract:
The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.Keywords: Magnetic water, self-compacting light weight concrete, silica fume, superplasticizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12992543 Treatment of Low-Grade Iron Ore Using Two Stage Wet High-Intensity Magnetic Separation Technique
Authors: Moses C. Siame, Kazutoshi Haga, Atsushi Shibayama
Abstract:
This study investigates the removal of silica, alumina and phosphorus as impurities from Sanje iron ore using wet high-intensity magnetic separation (WHIMS). Sanje iron ore contains low-grade hematite ore found in Nampundwe area of Zambia from which iron is to be used as the feed in the steelmaking process. The chemical composition analysis using X-ray Florence spectrometer showed that Sanje low-grade ore contains 48.90 mass% of hematite (Fe2O3) with 34.18 mass% as an iron grade. The ore also contains silica (SiO2) and alumina (Al2O3) of 31.10 mass% and 7.65 mass% respectively. The mineralogical analysis using X-ray diffraction spectrometer showed hematite and silica as the major mineral components of the ore while magnetite and alumina exist as minor mineral components. Mineral particle distribution analysis was done using scanning electron microscope with an X-ray energy dispersion spectrometry (SEM-EDS) and images showed that the average mineral size distribution of alumina-silicate gangue particles is in order of 100 μm and exists as iron-bearing interlocked particles. Magnetic separation was done using series L model 4 Magnetic Separator. The effect of various magnetic separation parameters such as magnetic flux density, particle size, and pulp density of the feed was studied during magnetic separation experiments. The ore with average particle size of 25 µm and pulp density of 2.5% was concentrated using pulp flow of 7 L/min. The results showed that 10 T was optimal magnetic flux density which enhanced the recovery of 93.08% of iron with 53.22 mass% grade. The gangue mineral particles containing 12 mass% silica and 3.94 mass% alumna remained in the concentrate, therefore the concentrate was further treated in the second stage WHIMS using the same parameters from the first stage. The second stage process recovered 83.41% of iron with 67.07 mass% grade. Silica was reduced to 2.14 mass% and alumina to 1.30 mass%. Accordingly, phosphorus was also reduced to 0.02 mass%. Therefore, the two stage magnetic separation process was established using these results.
Keywords: Sanje iron ore, magnetic separation, silica, alumina, recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12782542 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.
Keywords: Alumina-coated magnetite nanoparticles, magnetic mixed hemimicell solid-phase extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12162541 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi
Abstract:
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.Keywords: Tumor tissue, antibody, magnetic nanoparticle, CTCs capturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10972540 Lorentz Forces in the Container
Authors: K. Horáková, K. Fraňa
Abstract:
Leading topic of this article is description of Lorentz forces in the container with cuboid and cylindrical shape. Inside of the container is an electrically conductive melt. This melt is driven by rotating magnetic field. Input data for comparing Lorentz forces in the container with cuboid shape were obtained from the computing program NS-FEM3D, which uses DDS method of computing. Values of Lorentz forces for container with cylindrical shape were obtained from inferred analytical formula.Keywords: Lorentz forces, magnetohydrodynamics, rotatingmagnetic field, computing program NS-FEM3D
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16622539 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer
Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu
Abstract:
Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power Field Effect Transistor (FET) was was small. The power efficiencies were 0.44-0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.
Keywords: E-textile, flexible coils, flexible antennas, Litz wire, wireless power transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082538 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags
Authors: Elias Akoury
Abstract:
Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.
Keywords: Lanthanide Tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9982537 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids
Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim
Abstract:
In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.Keywords: Magnetic nanofluids, thermal conductivity, Viscosity, NiFe2O4-water, CoFe2O4-water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18492536 Direct Measurement of Electromagnetic Thrust of Electrodeless Helicon Plasma Thruster Using Magnetic Nozzle
Authors: Takahiro Nakamura, Kenji Takahashi, Hiroyuki Nishida, Shunjiro Shinohara, Takeshi Matsuoka, Ikkoh Funaki, Takao Tanikawa, Tohru Hada
Abstract:
In order to realize long-lived electric propulsion systems, we have been investigating an electrodeless plasma thruster. In our concept, a helicon plasma is accelerated by the magnetic nozzle for the thrusts production. In addition, the electromagnetic thrust can be enhanced by the additional radio-frequency rotating electric field (REF) power in the magnetic nozzle. In this study, a direct measurement of the electromagnetic thrust and a probe measurement have been conducted using a laboratory model of the thruster under the condition without the REF power input. Fromthrust measurement, it is shown that the thruster produces a sub-milli-newton order electromagnetic thrust force without the additional REF power. The thrust force and the density jump are observed due to the discharge mode transition from the inductive coupled plasma to the helicon wave excited plasma. The thermal thrust is theoretically estimated, and the total thrust force, which is a sum of the electromagnetic and the thermal thrust force and specific impulse are calculated to be up to 650 μN (plasma production power of 400 W, Ar gas mass flow rate of 1.0 mg/s) and 210 s (plasma production power of 400 W, Ar gas mass flow rate of 0.2 mg/s), respectively.Keywords: Electric propulsion, Helicon plasma, Lissajous acceleration, Thrust stand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21762535 Self-Sensing versus Reference Air Gaps
Authors: Alexander Schulz, Ingrid Rottensteiner, Manfred Neumann, Michael Wehse, Johann Wassermann
Abstract:
Self-sensing estimates the air gap within an electro magnetic path by analyzing the bearing coil current and/or voltage waveform. The self-sensing concept presented in this paper has been developed within the research project “Active Magnetic Bearings with Supreme Reliability" and is used for position sensor fault detection. Within this new concept gap calculation is carried out by an alldigital analysis of the digitized coil current and voltage waveform. For analysis those time periods within the PWM period are used, which give the best results. Additionally, the concept allows the digital compensation of nonlinearities, for example magnetic saturation, without degrading signal quality. This increases the accuracy and robustness of the air gap estimation and additionally reduces phase delays. Beneath an overview about the developed concept first measurement results are presented which show the potential of this all-digital self-sensing concept.Keywords: digital signal analysis, active magnetic bearing, reliability, fault detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14762534 Use of Opti-Jet Cs Md1mr Device for Biocide Aerosolisation in 3t Magnetic Resonance
Authors: Robert Pintaric, Joze Matela, Stefan Pintaric, Stanka Vadnjal
Abstract:
Introduction: This work is aimed to represent the use of the OPTI-JET CS MD1 MR prototype for application of neutral electrolyzed oxidizing water (NEOW) in magnetic resonance rooms. Material and Methods: We produced and used OPTI-JET CS MD1 MR aerosolisator whereby was performed aerosolization. The presence of microorganisms before and after the aerosolisation was recorded with the help of cyclone air sampling. Colony formed units (CFU) was counted. Results: The number of microorganisms in magnetic resonance 3T room was low as expected. Nevertheless, a possible CFU reduction of 87% was recorded. Conclusions: The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of microorganisms and consequently the possibility of hospital infections. It has also demonstrated that the use of OPTI-JET CS MD1 MR is very good. With this research, we started new guidelines for aerosolization in magnetic resonance rooms. Future work: We predict that presented technique works very good but we must focus also on time capacity sensors, and new appropriate toxicological studies.Keywords: Biocide, electrolyzed oxidizing water (EOW), disinfection, microorganisms, OPTI-JET CS MD1MR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17282533 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe
Authors: Ziya Uddin
Abstract:
This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.
Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23142532 Mechanism of Dual Ferroic Properties Formation in Substituted M-Type Hexaferrites
Authors: A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishin, V. A. Turchenko
Abstract:
It has been shown that BaFe12O19 is a perspective room-temperature multiferroic material. A large spontaneous polarization was observed for the BaFe12O19 ceramics revealing a clear ferroelectric hysteresis loop. The maximum polarization was estimated to be approximately 11.8 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe12O19. The magnetic field induced electric polarization has been also observed in the doped BaFe12-x-δScxMδO19 (δ=0.05) at 10 K and in the BaScxFe12−xO19 and SrScxFe12−xO19 (x = 1.3–1.7) M-type hexaferrites. The investigated BaFe12-xDxO19 (x=0.1, D-Al3+, In3+) samples have been obtained by two-step “topotactic” reactions. The powder neutron investigations of the samples were performed by neutron time of flight method at High Resolution Fourier Diffractometer.Keywords: Substituted hexaferrites, ferrimagnetics, ferroelectrics, neutron powder diffraction, crystal and magnetic structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600