Search results for: Hydraulic conductivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 548

Search results for: Hydraulic conductivity

428 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
427 Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of “n“ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran

Authors: M.R.Mansoujian, A.Rohani, N.Hedayat , M.Qamari, M. Osroosh

Abstract:

Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.

Keywords: Sediment transport, Manning coefficient, Eastern Intake, SHARC, Dez River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
426 An Intelligent Combined Method Based on Power Spectral Density, Decision Trees and Fuzzy Logic for Hydraulic Pumps Fault Diagnosis

Authors: Kaveh Mollazade, Hojat Ahmadi, Mahmoud Omid, Reza Alimardani

Abstract:

Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. The aim of this work is to investigate the effectiveness of a new fault diagnosis method based on power spectral density (PSD) of vibration signals in combination with decision trees and fuzzy inference system (FIS). To this end, a series of studies was conducted on an external gear hydraulic pump. After a test under normal condition, a number of different machine defect conditions were introduced for three working levels of pump speed (1000, 1500, and 2000 rpm), corresponding to (i) Journal-bearing with inner face wear (BIFW), (ii) Gear with tooth face wear (GTFW), and (iii) Journal-bearing with inner face wear plus Gear with tooth face wear (B&GW). The features of PSD values of vibration signal were extracted using descriptive statistical parameters. J48 algorithm is used as a feature selection procedure to select pertinent features from data set. The output of J48 algorithm was employed to produce the crisp if-then rule and membership function sets. The structure of FIS classifier was then defined based on the crisp sets. In order to evaluate the proposed PSD-J48-FIS model, the data sets obtained from vibration signals of the pump were used. Results showed that the total classification accuracy for 1000, 1500, and 2000 rpm conditions were 96.42%, 100%, and 96.42% respectively. The results indicate that the combined PSD-J48-FIS model has the potential for fault diagnosis of hydraulic pumps.

Keywords: Power Spectral Density, Machine ConditionMonitoring, Hydraulic Pump, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
425 Design and Implementation of an Intelligent System for Detection of Hazardous Gases using PbPc Sensor Array

Authors: Mahmoud Z. Iskandarani, Nidal F. Shilbayeh

Abstract:

The voltage/current characteristics and the effect of NO2 gas on the electrical conductivity of a PbPc gas sensor array is investigated. The gas sensor is manufactured using vacuum deposition of gold electrodes on sapphire substrate with the leadphathalocyanine vacuum sublimed on the top of the gold electrodes. Two versions of the PbPc gas sensor array are investigated. The tested types differ in the gap sizes between the deposited gold electrodes. The sensors are tested at different temperatures to account for conductivity changes as the molecular adsorption/desorption rate is affected by heat. The obtained results found to be encouraging as the sensors shoed stability and sensitivity towards low concentration of applied NO2 gas.

Keywords: Intelligent System, PbPc, Gas Sensor, Hardware, Software, Neural.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
424 Denitrification of Wastewater Containing High Nitrate Using a Bioreactor System Packed by Microbial Cellulose

Authors: H. Godini, A. Rezaee, A. Jafari, S. H. Mirhousaini

Abstract:

A Laboratory-scale packed bed reactor with microbial cellulose as the biofilm carrier was used to investigate the denitrification of high-strength nitrate wastewater with specific emphasis on the effect the nitrogen loading rate and hydraulic retention time. Ethanol was added as a carbon source for denitrification. As a result of this investigation, it was found that up to 500 mg/l feed nitrate concentration the present system is able to produce an effluent with nitrate content below 10 ppm at 3 h hydraulic retention time. The highest observed denitrification rate was 4.57 kg NO3-N/ (m3 .d) at a nitrate load of 5.64 kg NO3- N/(m3 .d), and removal efficiencies higher than 90% were obtained for loads up to 4.2 kg NO3-N/(m3 .d). A mass relation between COD consumed and NO3-N removed around 2.82 was observed. This continuous-flow bioreactor proved an efficient denitrification system with a relatively low retention time.

Keywords: Biological nitrate removal, Denitrification, Microbial cellulose, Packed-bed reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565
423 Thermal Properties of Lime-Pozzolan Plasters for Application in Hollow Bricks Systems

Authors: Z. Pavlík, M. Čáchová, E. Vejmelková, T. Korecký, J. Fořt, M. Pavlíková, R. Černý

Abstract:

The effect of waste ceramic powder on the thermal properties of lime-pozzolana composites is investigated. At first, the measurements of effective thermal conductivity of lime-pozzolan composites are performed in dependence on moisture content from the dry state to fully water saturated state using a pulse method. Then, the obtained data are analyzed using two different homogenization techniques, namely the Lichtenecker’s and Dobson’s formulas, taking into account Wiener’s and Hashin/Shtrikman bounds. 

Keywords: Waste ceramic powder, lime-pozzolan plasters, effective thermal conductivity, homogenization techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
422 Boundary Effect on the Onset of Marangoni Convection with Internal Heat Generation

Authors: Norihan Md Arifin, Norfifah Bachok

Abstract:

The onset of Marangoni convection in a horizontal fluid layer with internal heat generation overlying a solid layer heated from below is studied. The upper free surface of a fluid is nondeformable and the bottom boundary are rigid and no-slip. The resulting eigenvalue problem is solved exactly. The critical values of the Marangoni numbers for the onset of Marangoni convection are calculated and the latter is found to be critically dependent on the internal heating, depth ratio and conductivity ratio. The effects of the thermal conductivity and the thickness of the solid plate on the onset of convective instability with internal heating are studied in detail.

Keywords: Linear stability, Marangoni convection, Internal Heatgeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
421 Experimental Studies on Treated Sub-base Soil with Fly Ash and Cement for Sustainable Design Recommendations

Authors: M. Jayakumar, Lau Chee Sing

Abstract:

The pavement constructions on soft and expansive soils are not durable and unable to sustain heavy traffic loading. As a result, pavement failures and settlement problems will occur very often even under light traffic loading due to cyclic and rolling effects. Geotechnical engineers have dwelled deeply into this matter, and adopt various methods to improve the engineering characteristics of soft fine-grained soils and expansive soils. The problematic soils are either replaced by good and better quality material or treated by using chemical stabilization with various binding materials. Increased the strength and durability are also the part of the sustainability drive to reduce the environment footprint of the built environment by the efficient use of resources and waste recycle materials. This paper presents a series of laboratory tests and evaluates the effect of cement and fly ash on the strength and drainage characteristics of soil in Miri. The tests were performed at different percentages of cement and fly ash by dry weight of soil. Additional tests were also performed on soils treated with the combinations of fly ash with cement and lime. The results of this study indicate an increase in unconfined compression strength and a decrease in hydraulic conductivity of the treated soil.

Keywords: Pavement failure, soft soil, sustainability, stabilization, fly ash, strength and permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3437
420 Effect of Temperature on the Water Retention Capacity of Liner Materials

Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla

Abstract:

Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.

Keywords: Soil water retention curve, sand-expansive clay mixture, suction, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
419 Synthesis and Characterization of PEG-Silane Functionalized Iron Oxide Nanoparticle as MRI T2 Contrast Agent

Authors: Mu-Jen Young, Cheng-Yen Wu, Wen-Yuan Hsieh

Abstract:

Iron oxide nanoparticle was synthesized by reactive-precipitation method followed by high speed centrifuge and phase transfer in order to stabilized nanoparticles in the solvent. Particle size of SPIO was 8.2 nm by SEM, and the hydraulic radius was 17.5 nm by dynamic light scattering method. Coercivity and saturated magnetism were determined by VSM (vibrating sample magnetometer), coercivity of nanoparticle was lower than 10 Hc, and the saturated magnetism was higher than 65 emu/g. Stabilized SPIO was then transferred to aqueous phase by reacted with excess amount of poly (ethylene glycol) (PEG) silane. After filtration and dialysis, the SPIO T2 contrast agent was ready to use. The hydraulic radius of final product was about 70~100 nm, the relaxation rates R2 (1/T2) measured by magnetic resonance imaging (MRI) was larger than 200(sec-1).

Keywords: Contrast Agent, Iron Oxide Nanoparticle, Magnetic Resonance Imaging, Nanoparticle Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212
418 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties

Authors: Jaehyug Lee, Tae-Ho Song

Abstract:

Vacuum Insulation Panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agrees well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.

Keywords: Combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
417 Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)

Authors: Abbas Hani, Seyed Ali Hoseini Abari

Abstract:

Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.

Keywords: Electrical conductivity, Geostatistics, Geographical Information System, TNV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
416 Hydraulic Unbalance in Oil Injected Twin Rotary Screw Compressor Vibration Analysis (A Case History Related to Iran Oil Industries)

Authors: Omid A. Zargar

Abstract:

Vibration analysis of screw compressors is one of the most challenging cases in preventive maintenance. This kind of equipment considered as vibration bad actor facilities in industrial plants. On line condition monitoring systems developed too much in recent years. The high frequency vibration of ball bearings, gears, male and female caused complex fast Fourier transform (FFT) and time wave form (TWF) in screw compressors. The male and female randomly are sent to balance shop for balancing operation. This kind of operation usually caused some bending in rotors during the process that could cause further machining in such equipment. This kind of machining operation increased the vibration analysis complexity beside some process characteristic abnormality like inlet and out let pressure and temperature. In this paper mechanical principal and different type of screw compressors explained. Besides, some new condition monitoring systems and techniques for screw compressors discussed. Finally, one of the common behavior of oil injected twin rotary screw compressors called hydraulic unbalance that usually occurred after machining operation of male or female and have some specific characteristics in FFT and TWF discussed in details through a case history related to Iran oil industries.

Keywords: Vibration analysis, twin screw compressor, oil injected screw compressor, time wave form (TWF), fast Fourier transform (FFT), Hydraulic unbalance and rotor unbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4581
415 Simulation and Analysis of the Shift Process for an Automatic Transmission

Authors: Kei-Lin Kuo

Abstract:

The automatic transmission (AT) is one of the most important components of many automobile transmission systems. The shift quality has a significant influence on the ride comfort of the vehicle. During the AT shift process, the joint elements such as the clutch and bands engage or disengage, linking sets of gears to create a fixed gear ratio. Since these ratios differ between gears in a fixed gear ratio transmission, the motion of the vehicle could change suddenly during the shift process if the joint elements are engaged or disengaged inappropriately, additionally impacting the entire transmission system and increasing the temperature of connect elements.The objective was to establish a system model for an AT powertrain using Matlab/Simulink. This paper further analyses the effect of varying hydraulic pressure and the associated impact on shift quality during both engagment and disengagement of the joint elements, proving that shift quality improvements could be achieved with appropriate hydraulic pressure control.

Keywords: Automatic transmission, Simulation and analysis, Shift quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4512
414 Innovative Techniques for Characterization of Nonwoven Insulation Materials Embedded with Aerogel

Authors: Mohanapriya Venkataraman, Rajesh Mishra, Jakub Weiner, Adnan Mazari, Jiri Militky, Veera Kumar Arumugam

Abstract:

The major objective of this study is to understand the potential of a newly fabricated equipment to study the thermal properties of nonwoven textile fabrics treated with aerogel at subzero temperatures. Thermal conductivity was calculated by using the empirical relation Fourier’s law, The relationship between the thermal conductivity and thermal resistance of the samples were studied at various environmental temperatures (which was set in the clima temperature system between +25oC to -25oC). The newly fabricated equipment was found to be a suitable for measuring at subzero temperatures. This field of measurements is being developed and will be the subject of further research which will be more suitable for measurement of the various thermal characteristics.

Keywords: Thermal Measurements, Aerogel, Nonwoven, Hot plate Heading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3246
413 Hydrogen Sensor Based on Surface Activated WO3 Films by Pd Nanoclusters

Authors: S.Fardindoost, A. Iraji Zad, S.M.Mahdavi

Abstract:

Tungsten trioxide has been prepared by using P-PTA as a precursor on alumina substrates by spin coating method. Palladium introduced on WO3 film via electrolysis deposition by using palladium chloride as catalytic precursor. The catalytic precursor was introduced on the series of films with different morphologies. X-ray diffractometry (XRD), Scanning electron microscopy (SEM) and XPS were applied to analyze structure and morphology of the fabricated thin films. Then we measured variation of samples- electrical conductivity of pure and Pd added films in air and diluted hydrogen. Addition of Pd resulted in a remarkable improvement of the hydrogen sensing properties of WO3 by detection of Hydrogen below 1% at room temperature. Also variation of the electrical conductivity in the presence of diluted hydrogen revealed that response of samples depends rather strongly on the palladium configuration on the surface.

Keywords: Electrolysis, Hydrogen sensing, Palladium, WO3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
412 Controlling Water Temperature during the Electrocoagulation Process Using an Innovative Flow Column-Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola

Abstract:

A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 350C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-350C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 350C to the vicinity of 280C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.80C and from 29.8 to 31.90C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 280C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 350C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.

Keywords: Water temperature, flow column, electrocoagulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
411 Progressive Changes in Physicochemical Constituent of Rainwater: A Case Study at Oyoko, a Rural Community in Ghana

Authors: J. O. Yeboah, K Aboraa, K. Kodom

Abstract:

The chemical and physical characteristics of rainwater harvested from a typical rooftop were progressively studied. The samples of rainwater collected were analyzed for pH, major ion concentrations, TDS, turbidity, conductivity. All the Physicochemical constituents fell within the WHO guideline limits at some points as rainfall progresses except the pH. All the components of rainwater quality measured during the study showed higher concentrations during the early stages of rainfall and reduce as time progresses. There was a downward trend in terms of pH as rain progressed, with 18% of the samples recording pH below the WHO limit of 6.5-8.0. It was observed that iron concentration was above the WHO threshold value of 0.3 mg/l on occasions of heavy rains. The results revealed that most of physicochemical characteristics of rainwater samples were generally below the WHO threshold, as such, the rainwater characteristics showed satisfactory conditions in terms of physicochemical constituents.

Keywords: Conductivity, pH, physicochemistry, rainwater quality, TDS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
410 Analysis of Air-Water Two-Phase Flow in a 3x3 Rod Bundle

Authors: Pei-Syuan Ruan, Ya-Chi Yu, Shao-Wen Chen, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih

Abstract:

This study investigated the void fraction characteristics under low superficial gas velocity (Jg) and low superficial fluid velocity (Jf) conditions in a 3x3 rod bundle geometry. Three arrangements of conductivity probes were set to measure the void fraction at various cross-sectional regions, including rod-gap, sub-channel and rod-wall regions. The experimental tests were performed under the flow conditions of Jg = 0-0.236 m/s and Jf = 0-0.142 m/s, and the time-averaged void fractions were recorded at each flow condition. It was observed that while the superficial gas velocity increases, the small bubbles started to cluster together and become big bubbles. As the superficial fluid velocity increases, the local void fractions of the three test regions will get closer and the bubble distribution will be more uniform across the cross section.

Keywords: Conductivity probes, rod bundles, two-phase flow, void fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
409 Energy Loss at Drops using Neuro Solutions

Authors: Farzin Salmasi

Abstract:

Energy dissipation in drops has been investigated by physical models. After determination of effective parameters on the phenomenon, three drops with different heights have been constructed from Plexiglas. They have been installed in two existing flumes in the hydraulic laboratory. Several runs of physical models have been undertaken to measured required parameters for determination of the energy dissipation. Results showed that the energy dissipation in drops depend on the drop height and discharge. Predicted relative energy dissipations varied from 10.0% to 94.3%. This work has also indicated that the energy loss at drop is mainly due to the mixing of the jet with the pool behind the jet that causes air bubble entrainment in the flow. Statistical model has been developed to predict the energy dissipation in vertical drops denotes nonlinear correlation between effective parameters. Further an artificial neural networks (ANNs) approach was used in this paper to develop an explicit procedure for calculating energy loss at drops using NeuroSolutions. Trained network was able to predict the response with R2 and RMSE 0.977 and 0.0085 respectively. The performance of ANN was found effective when compared to regression equations in predicting the energy loss.

Keywords: Air bubble, drop, energy loss, hydraulic jump, NeuroSolutions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
408 A Study on the Removal of Trace Organic Matter in Water Treatment Procedures Using Powder-activated Carbon Biofilm

Authors: Rou-Han Lee, Jie, Chung Lou, Huang-Ming Fang

Abstract:

This study uses natural water and the surface properties of powdered activated carbon to acclimatize organics, forming biofilms on the surface of powdered activated carbon. To investigate the influence of different hydraulic retention times on the removal efficacy of trace organics in raw water, and to determine the optimal hydraulic retention time of a biological powdered activated carbon system, this study selects ozone-treated water processed by Feng-shan Advanced Water Purification Plant in southern Taiwan for the experiment. The evaluation indicators include assimilable organic carbon, dissolved organic carbon, and total organic carbon. The results of this study can improve the quality of drinking water treated using advanced water purification procedures.

Keywords: Water Purification Procedures, Biological Powdered Activated Carbon System, Assimilable Organic Carbon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
407 Anomalous Thermal Behavior of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) for LTCC Substrate

Authors: Jyotirmayee Satapathy, M. V. Ramana Reddy

Abstract:

LTCC (Low Temperature Co-fired Ceramics) being the most advantageous technology towards the multilayer substrates for various applications, demands an extensive study of its raw materials. In the present work, a series of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) has been prepared using sol-gel synthesis route and sintered at a temperature of 900°C to study its applicability for LTCC technology as the firing temperature is 900°C in this technology. The phase formation has been confirmed using X-ray Diffraction. Thermal properties like thermal conductivity and thermal expansion being very important aspect as the former defines the heat flow to avoid thermal instability in layers and the later provides the dimensional congruency of the dielectric material and the conductors, are studied here over high temperature up to the firing temperature. Although the values are quite satisfactory from substrate requirement point view, results have shown anomaly over temperature. The anomalous thermal behavior has been further analyzed using TG-DTA.

Keywords: Niobates, LTCC, Thermal conductivity, Thermal expansion, TG-DTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
406 Simulation of Loss-of-Flow Transient in a Radiant Steam Boiler with Relap5/Mod3.2

Authors: A.L.Deghal.Cheridi, A.Chaker, A.Loubar

Abstract:

loss of feedwater accident is one of the frequently sever accidents in steam boiler facilities. It threatens the system structural integrity and generates serious hazards and economic loses. The safety analysis of the thermal installations, based extensively on the numeric simulation. The simulation analysis using realistic computer codes like Relap5/Mod3.2 will help understand steam boiler thermal-hydraulic behavior during normal and abnormal conditions. In this study, we are interested on the evaluation of the radiant steam boiler assessment and response to loss-of-feedwater accident. Pressure, temperature and flow rate profiles are presented in various steam boiler system components. The obtained results demonstrate the importance and capability of the Relap5/Mod3.2 code in the thermal-hydraulic analysis of the steam boiler facilities.

Keywords: Radiant steam boiler, Relap5/Mod3.2 code system, Steady-state simulation, Transient simulation, Loss of feedwateraccident

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
405 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method

Authors: C. C. Chen, C. M. Chu, C. J. Wang, C. Y. Chen, K. J. Huang

Abstract:

Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.

Keywords: Cesiumiodide, AAO, scintillator, crystal, X-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
404 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: Free-surface wave, inviscid fluid, analytical solution, hydraulic channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 797
403 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel

Authors: M. I. Equbal, R.K. Ohdar, B. Singh, P. Talukdar

Abstract:

Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Microalloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.

Keywords: Cooling rate, Hot forging, Micro-alloyed, Ring compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3665
402 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle

Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen

Abstract:

In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.

Keywords: Activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
401 A Simplified Analytical Approach for Coupled Injection Method of Colloidal Silica with Time Dependent Properties

Authors: M. A. Nozari, R. Ziaie Moayed

Abstract:

Electro-osmosis in clayey soils and sediments, for purposes of clay consolidation, dewatering, or cleanup, and electro injection in porous media is widespread recent decades. It is experimentally found that the chemical properties of porous media especially PH change the characteristics of media. Electro-osmotic conductivity is a function of soil and grout material chemistry, altering with time. Many numerical approaches exist to simulate the of electro kinetic flow rate considering chemical changes. This paper presents a simplified analytical solution for constant flow rate based on varying electro osmotic conductivity and time dependent viscosity for injection of colloidal silica.

Keywords: Colloidal silica, electro-osmosis, pH, viscosity, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
400 Modification and Characterization of Bacterial Cellulose Biopolymer as Proton Conducting Membrane

Authors: C. W. Lin, S.W. Chen

Abstract:

This study describes the preparation of a novel proton conducting membranes based on bacterial cellulose (BC) modified by grafting of 2-acrylamido-2-methyl-1 -propanesulfonic acid (AMPS) through UV-induced graft polymerization. These AMPS-g-BC membranes have been characterized by various techniques including FTIR, SEM and TGA, to find their successful grafting of AMPS on BC, surface morphology and thermal stability, respectively. Physical properties of AMPS-g-BC membranes have been assessed in terms of Lamda value( λ ), ion exchange capacity(IEC) and proton conductivity. The relationship between degree of grafting and AMPS concentration used for grafting has been determined by weight gain method. An optimum proton conductivity equal to 2.89x10-2 S cm-1 and IEC value equal to 1.79 mmol g-1 have been obtained when 20 wt% AMPS concentration is used for grafting (i.e. the corresponding membrane is notated as AMPS20-g-BC).

Keywords: Bacterial cellulose, 2-acrylamido-2-methyl-1-propanesulfonic acid, Proton conducting membrane, Self diffusioncoefficient, Fuel cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
399 Application of Vortex Tubes for Extracting Sediments Using SHARC Software - A Case Study of the Western Canal in the Dez Diversion Weir

Authors: A. H. Sajedi Pour, N. Hedayat, Z. Yazdi

Abstract:

Sediment loads transfer in hydraulic installations and their consequences for the O&M of modern canal systems is emerging as one of the most important considerations in hydraulic engineering projects apriticularly those which are inteded to feed the irrigation and draiange schemes of large command areas such as the Dez and Mogahn in Iran.. The aim of this paper is to investigate the applicability of the vortex tube as a viable means of extracting sediment loads entering the canal systems in general and the water inatke structures in particulars. The Western conveyance canal of the Dez Diversion weir which feeds the Karkheh Flood Plain in Sothwestern Dezful has been used as the case study using the data from the Dastmashan Hydrometric Station. The SHARC software has been used as an analytical framework to interprete the data. Results show that given the grain size D50 and the canal turbulence the adaption length from the beginning of the canal and after the diversion dam is estimated at 477 m, a point which is suitable for laying the vortex tube.

Keywords: Vortex tube, sediments, western canal, SHARCmodel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068