Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: Free-surface wave, inviscid fluid, analytical solution, hydraulic channel.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3607731

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796

References:


[1] Lamb H., 1945, Hydrodynamics, 6th ed. Dover, New York
[2] Gazdar A. S., 1973, Generation of waves of small amplitude by an obstacle placed on the bottom of a running stream. J. Phys. Soc. Japan, 34, 530
[3] Bouhadef, M., Bauché, B., Peube, J.-L., 1981, Structure de l'écoulement à surface libre derrière un obstacle noyé au fond d'un canal. C. R. Acad. Sci. de Paris. t. 292
[4] Forbes, L.K and Schwartz, L.W., 1982, Free surface flow over a circular obstruction. J. Fluid Mech 114,299
[5] Boutros, Y. Z., Abdelmalek, M. B. and Masoud, S. Z., 1986, Linearised solution of a flow over a non uniform bottom. J. of Comput and Appli. Math., 16,105
[6] Bloor, M. I. G. and King, A. C., 1987, Free surface flow over a step. J. Fluid Mech. 182,193
[7] Bouhadef, M., Peube, J.-L., 1988, Propagation des ondes superficielles de faible amplitude aux petits nombres de Froude dans un écoulement à gradient vertical de vitesse. Journal. Mec. Theor. et Appli. Vol. 7, n°1
[8] Bouhadef, M., Peube, J.-L., 1989, Propagation des ondes de surface de faible amplitude dans un écoulement cisaillé. C.R. Acad. Sci. Paris. t.308
[9] Zitoun, T. Bouhadef, M., 2003, Etude analytique des ondes de gravité induites par un ou plusieurs obstacles. 6ème Congrès de Mécanique, Tanger (Maroc), 15-18 avril
[10] Guendouzen-Dabouz, T., Ouatiki, K., Bouhadef, M., 2005, Contribution to experimental and numerical study of the flow in an open hydraulic channel. 4th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, HEFAT 2005, Le Caire (Egypt), 19-22 September
[11] Bouinoun, M., Bouhadef, M., 2015, Experiments of a free surface flow in a hydraulic channel over an uneven bottom. World Academy of Science, Engineering and Technology, Vol.9, n°7