Search results for: Fuzzy c means.
2116 A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images
Authors: Sara A.Yones, Ahmed S. Moussa
Abstract:
Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.
Keywords: Alpha Cut, Fuzzy Connectedness, Magnetic Resonance Imaging, Tumor volume estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23982115 Electricity Consumption Prediction Model using Neuro-Fuzzy System
Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil
Abstract:
In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20112114 (λ, μ)-Intuitionistic Fuzzy Subgroups of Groups with Operators
Authors: Shaoquan Sun, Chunxiang Liu
Abstract:
The aim of this paper is to introduce the concepts of the (λ, μ)-intuitionistic fuzzy subgroups and (λ, μ)-intuitionistic fuzzy normal subgroups of groups with operators, and to investigate their properties and characterizations based on M-group homomorphism.Keywords: Intuitionistic fuzzy group, (λ, μ)-intuitionistic fuzzy subgroup of groups with operators, (λ, μ)-intuitionistic fuzzy normal subgroup of groups with operators, M-group homomorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17732113 Intuitionistic Fuzzy Positive Implicative Ideals with Thresholds (λ,μ) of BCI-Algebras
Authors: Qianqian Li, Shaoquan Sun
Abstract:
The aim of this paper is to introduce the notion of intuitionistic fuzzy positive implicative ideals with thresholds (λ, μ) of BCI-algebras and to investigate its properties and characterizations.Keywords: BCI-algebra, intuitionistic fuzzy set, intuitionistic fuzzy ideal with thresholds (λ, μ), intuitionistic fuzzy positive implicative ideal with thresholds (λ, μ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21092112 On λ− Summable of Orlicz Space of Entire Sequences of Fuzzy Numbers
Authors: N. Subramanian, U. K. Misra, M. S. Panda
Abstract:
In this paper the concept of strongly (λM)p - Ces'aro summability of a sequence of fuzzy numbers and strongly λM- statistically convergent sequences of fuzzy numbers is introduced.Keywords: Fuzzy numbers, statistical convergence, Orlicz space, entire sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19192111 The Analysis of Different Classes of Weighted Fuzzy Petri Nets and Their Features
Authors: Yurii Bloshko, Oksana Olar
Abstract:
This paper presents the analysis of six different classes of Petri nets: fuzzy Petri nets (FPN), generalized fuzzy Petri nets (GFPN), parameterized fuzzy Petri nets (PFPN), T2GFPN, flexible generalized fuzzy Petri nets (FGFPN), binary Petri nets (BPN). These classes were simulated in the special software PNeS® for the analysis of its pros and cons on the example of models which are dedicated to the decision-making process of passenger transport logistics. The paper includes the analysis of two approaches: when input values are filled with the experts’ knowledge; when fuzzy expectations represented by output values are added to the point. These approaches fulfill the possibilities of triples of functions which are replaced with different combinations of t-/s-norms.
Keywords: Fuzzy petri net, intelligent computational techniques, knowledge representation, triangular norms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4542110 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease
Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan
Abstract:
In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18212109 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process
Authors: C. Ardil
Abstract:
The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.
Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6012108 A Type-2 Fuzzy Adaptive Controller of a Class of Nonlinear System
Authors: A. El Ougli, I. Lagrat, I. Boumhidi
Abstract:
In this paper we propose a robust adaptive fuzzy controller for a class of nonlinear system with unknown dynamic. The method is based on type-2 fuzzy logic system to approximate unknown non-linear function. The design of the on-line adaptive scheme of the proposed controller is based on Lyapunov technique. Simulation results are given to illustrate the effectiveness of the proposed approach.Keywords: Fuzzy set type-2, Adaptive fuzzy control, Nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18292107 Identification of a PWA Model of a Batch Reactor for Model Predictive Control
Authors: Gorazd Karer, Igor Skrjanc, Borut Zupancic
Abstract:
The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.
Keywords: Batch reactor, fuzzy clustering, hybrid systems, identification, nonlinear systems, PWA systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21952106 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation
Authors: N. Parandin, M. A. Fariborzi Araghi
Abstract:
in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14072105 On Some Subspaces of Entire Sequence Space of Fuzzy Numbers
Authors: T. Balasubramanian, A. Pandiarani
Abstract:
In this paper we introduce some subspaces of fuzzy entire sequence space. Some general properties of these sequence spaces are discussed. Also some inclusion relation involving the spaces are obtained. Mathematics Subject Classification: 40A05, 40D25.
Keywords: Fuzzy Numbers, Entire sequences, completeness, Fuzzy entire sequences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12412104 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums
Authors: I. Zamani, M. H. Zarif
Abstract:
In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.
Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25142103 A New Reliability Allocation Method Based On Fuzzy Numbers
Authors: Peng Li, Chuanri Li, Tao Li
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method, and gives concrete processes on determining the factor and sub-factor sets, weight sets, judgment set, and multi-stage fuzzy evaluation. To determine the weight of factor and sub-factor sets, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.
Keywords: Reliability allocation, fuzzy arithmetic, allocation weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33292102 Fuzzy Multiple Criteria Decision Making for Unmanned Combat Aircraft Selection Using Proximity Measure Method
Authors: C. Ardil
Abstract:
Intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PyFS), Picture fuzzy sets (PFS), q-rung orthopair fuzzy sets (q-ROF), Spherical fuzzy sets (SFS), T-spherical FS, and Neutrosophic sets (NS) are reviewed as multidimensional extensions of fuzzy sets in order to more explicitly and informatively describe the opinions of decision-making experts under uncertainty. To handle operations with standard fuzzy sets (SFS), the necessary operators; weighted arithmetic mean (WAM), weighted geometric mean (WGM), and Minkowski distance function are defined. The algorithm of the proposed proximity measure method (PMM) is provided with a multiple criteria group decision making method (MCDM) for use in a standard fuzzy set environment. To demonstrate the feasibility of the proposed method, the problem of selecting the best drone for an Air Force procurement request is used. The proximity measure method (PMM) based multidimensional standard fuzzy sets (SFS) is introduced to demonstrate its use with an issue involving unmanned combat aircraft selection.
Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), proximity measure method (PMM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3592101 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23752100 Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement
Authors: V. K. Banga, R. Kumar, Y. Singh
Abstract:
In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.Keywords: Inverse kinematics, Genetic algorithms (GAs), Fuzzy logic (FL), Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22932099 Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models
Authors: Ε. Giovanis
Abstract:
In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.Keywords: Forecasting, Neuro-Fuzzy, Smoothing transition, Time-series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16302098 A New Approach For Ranking Of Generalized Trapezoidal Fuzzy Numbers
Authors: Amit Kumar, Pushpinder Singh, Parampreet Kaur, Amarpreet Kaur
Abstract:
Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (2009) 6833-6842) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The main advantage of the proposed approach is that the proposed approach provide the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (2001) 375-385).Keywords: Ranking function, Generalized trapezoidal fuzzy numbers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27172097 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach
Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick
Abstract:
Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.Keywords: SPC, MSA, gauge capability, Cg, Cgk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51782096 Numerical Solving of General Fuzzy Linear Systems by Huang's Method
Authors: S. J. Hosseini Ghoncheh, M. Paripour
Abstract:
In this paper the Huang-s method for solving a m×n fuzzy linear system when, m≤ n, is considered. The method in detail is discussed and illustrated by solving some numerical examples.
Keywords: Fuzzy number, fuzzy linear systems, Huang's method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12912095 A Fuzzy Linear Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.Keywords: Dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14422094 On Q-Fuzzy Ideals in Γ-Semigroups
Authors: Samit Kumar Majumder
Abstract:
In this paper the concept of Q-fuzzification of ideals of Γ-semigroups has been introduced and some important properties have been investigated. A characterization of regular Γ-semigroup in terms of Q-fuzzy ideals has been obtained. Operator semigroups of a Γ-semigroup has been made to work by obtaining various relationships between Q-fuzzy ideals of a Γ-semigroup and that of its operator semigroups.
Keywords: Q-Fuzzy set, Γ-semigroup, Regular Γ-semigroup, Q-Fuzzy left(right) ideal, Operator semigroups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28622093 A New Condition for Conflicting Bifuzzy Sets Based On Intuitionistic Evaluation
Authors: Imran C.T., Syibrah M.N., Mohd Lazim A.
Abstract:
Fuzzy sets theory affirmed that the linguistic value for every contraries relation is complementary. It was stressed in the intuitionistic fuzzy sets (IFS) that the conditions for contraries relations, which are the fuzzy values, cannot be greater than one. However, complementary in two contradict phenomena are not always true. This paper proposes a new idea condition for conflicting bifuzzy sets by relaxing the condition of intuitionistic fuzzy sets. Here, we will critically forward examples using triangular fuzzy number in formulating a new condition for conflicting bifuzzy sets (CBFS). Evaluation of positive and negative in conflicting phenomena were calculated concurrently by relaxing the condition in IFS. The hypothetical illustration showed the applicability of the new condition in CBFS for solving non-complement contraries intuitionistic evaluation. This approach can be applied to any decision making where conflicting is very much exist.Keywords: Conflicting bifuzzy set, conflicting degree, fuzzy sets, fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16792092 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application
Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta
Abstract:
The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14632091 Standard Fuzzy Sets for Aircraft Selection using Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This study uses two-dimensional standard fuzzy sets to enhance multiple criteria decision-making analysis for passenger aircraft selection, allowing decision-makers to express judgments with uncertain and vague information. Using two-dimensional fuzzy numbers, three decision makers evaluated three aircraft alternatives according to seven decision criteria. A validity analysis based on two-dimensional standard fuzzy weighted geometric (SFWG) and two-dimensional standard fuzzy weighted average (SFGA) operators is conducted to test the proposed approach's robustness and effectiveness in the fuzzy multiple criteria decision making (MCDM) evaluation process.
Keywords: Standard fuzzy sets (SFSs), aircraft selection, multiple criteria decision making, intuitionistic fuzzy sets (IFSs), SFWG, SFGA, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3912090 The Intuitionistic Fuzzy Ordered Weighted Averaging-Weighted Average Operator and its Application in Financial Decision Making
Authors: Shouzhen Zeng
Abstract:
We present a new intuitionistic fuzzy aggregation operator called the intuitionistic fuzzy ordered weighted averaging-weighted average (IFOWAWA) operator. The main advantage of the IFOWAWA operator is that it unifies the OWA operator with the WA in the same formulation considering the degree of importance that each concept has in the aggregation. Moreover, it is able to deal with an uncertain environment that can be assessed with intuitionistic fuzzy numbers. We study some of its main properties and we see that it has a lot of particular cases such as the intuitionistic fuzzy weighted average (IFWA) and the intuitionistic fuzzy OWA (IFOWA) operator. Finally, we study the applicability of the new approach on a financial decision making problem concerning the selection of financial strategies.Keywords: Intuitionistic fuzzy numbers, Weighted average, OWA operator, Financial decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24392089 Novel and Different Definitions for Fuzzy Union and Intersection Operations
Authors: Aarthi Chandramohan, M. V. C. Rao
Abstract:
This paper presents three new methodologies for the basic operations, which aim at finding new ways of computing union (maximum) and intersection (minimum) membership values by taking into effect the entire membership values in a fuzzy set. The new methodologies are conceptually simple and easy from the application point of view and are illustrated with a variety of problems such as Cartesian product of two fuzzy sets, max –min composition of two fuzzy sets in different product spaces and an application of an inverted pendulum to determine the impact of the new methodologies. The results clearly indicate a difference based on the nature of the fuzzy sets under consideration and hence will be highly useful in quite a few applications where different values have significant impact on the behavior of the system.Keywords: Centroid, fuzzy set operations, intersection, triangular norms , triangular S-norms, union.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15052088 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem
Authors: Mustafa Resa Becan
Abstract:
The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.
Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20102087 A Study on Fuzzy Adaptive Control of Enteral Feeding Pump
Authors: Seungwoo Kim, Hyojune Chae, Yongrae Jung, Jongwook Kim
Abstract:
Recent medical studies have investigated the importance of enteral feeding and the use of feeding pumps for recovering patients unable to feed themselves or gain nourishment and nutrients by natural means. The most of enteral feeding system uses a peristaltic tube pump. A peristaltic pump is a form of positive displacement pump in which a flexible tube is progressively squeezed externally to allow the resulting enclosed pillow of fluid to progress along it. The squeezing of the tube requires a precise and robust controller of the geared motor to overcome parametric uncertainty of the pumping system which generates due to a wide variation of friction and slip between tube and roller. So, this paper proposes fuzzy adaptive controller for the robust control of the peristaltic tube pump. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good control performance, accurate dose rate and robust system stability, of the developed feeding pump is confirmed through experimental and clinic testing.
Keywords: Enteral Feeding Pump, Peristaltic Tube Pump, Fuzzy Adaptive Control, Fuzzy Multi-layered Controller, Look-up Table..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645