Search results for: Burst Errors
374 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR
Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li
Abstract:
Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960373 Continuous Measurement of Spatial Exposure Based on Visual Perception in Three-Dimensional Space
Authors: Nanjiang Chen
Abstract:
In the backdrop of expanding urban landscapes, accurately assessing spatial openness is critical. Traditional visibility analysis methods grapple with discretization errors and inefficiencies, creating a gap in truly capturing the human experience of space. Addressing these gaps, this paper presents a continuous visibility algorithm, providing a potentially valuable approach to measuring urban spaces from a human - centric perspective. This study presents a methodological breakthrough by applying this algorithm to urban visibility analysis. Unlike conventional approaches, this technique allows for a continuous range of visibility assessment, closely mirroring human visual perception. By eliminating the need for predefined subdivisions in ray casting, it offers a more accurate and efficient tool for urban planners and architects. The proposed algorithm not only reduces computational errors but also demonstrates faster processing capabilities, validated through a case study in Beijing's urban setting. Its key distinction lies in its potential to benefit a broad spectrum of stakeholders, ranging from urban developers to public policymakers, aiding in the creation of urban spaces that prioritize visual openness and quality of life. This advancement in urban analysis methods could lead to more inclusive, comfortable, and well-integrated urban environments, enhancing the spatial experience for communities worldwide.
Keywords: Visual openness, spatial continuity, ray-tracing algorithms, urban computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30372 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions
Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal
Abstract:
We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.Keywords: Air pollution, dispersion, emissions, line sources, road traffic, urban transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929371 Calculation of Density for Refrigerant Mixtures in Sub Critical Regions for Use in the Buildings
Authors: Mohammad Reza Mobinipouya, Zahra Barzegar
Abstract:
Accurate and comprehensive thermodynamic properties of pure and mixture of refrigerants are in demand by both producers and users of these materials. Information about thermodynamic properties is important initially to qualify potential candidates for working fluids in refrigeration machinery. From practical point of view, Refrigerants and refrigerant mixtures are widely used as working fluids in many industrial applications, such as refrigerators, heat pumps, and power plants The present work is devoted to evaluating seven cubic equations of state (EOS) in predicting gas and liquid phase volumetric properties of nine ozone-safe refrigerants both in super and sub-critical regions. The evaluations, in sub-critical region, show that TWU and PR EOS are capable of predicting PVT properties of refrigerants R32 within 2%, R22, R134a, R152a and R143a within 1% and R123, R124, R125, TWU and PR EOS's, from literature data are 0.5% for R22, R32, R152a, R143a, and R125, 1% for R123, R134a, and R141b, and 2% for R124. Moreover, SRK EOS predicts PVT properties of R22, R125, and R123 to within aforementioned errors. The remaining EOS's predicts volumetric properties of this class of fluids with higher errors than those above mentioned which are at most 8%.In general, the results are in favor of the preference of TWU and PR EOS over other remaining EOS's in predicting densities of all mentioned refrigerants in both super and sub critical regions. Typically, this refrigerant is known to offer advantages such as ozone depleting potential equal to zero, Global warming potential equal to 140, and no toxic.
Keywords: Refrigerant, cooling systems, Sub-CriticalRegions, volumetric properties, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159370 Novel Solid Lipid Nanoparticles for Oral Delivery of Oxyresveratrol: Effect of the Formulation Parameters on the Physicochemical Properties and in vitro Release
Authors: Y. Sangsen, K. Likhitwitayawuid, B. Sritularak, K. Wiwattanawongsa, R. Wiwattanapatapee
Abstract:
Novel solid lipid nanoparticles (SLNs) were developed to improve oral bioavailability of oxyresveratrol (OXY). The SLNs were prepared by a high speed homogenization technique, at an effective speed and time, using Compritol® 888 ATO (5% w/w) as the solid lipid. The appropriate weight proportions (0.3% w/w) of OXY affected the physicochemical properties of blank SLNs. The effects of surfactant types on the properties of the formulations such as particle size and entrapment efficacy were also investigated. Conclusively, Tween 80 combined with soy lecithin was the most appropriate surfactant to stabilize OXY-loaded SLNs. The mean particle size of the optimized formulation was 134.40 ± 0.57 nm. In vitro drug release study, the selected S2 formulation showed a retarded release profile for OXY with no initial burst release compared to OXY suspension in the simulated gastrointestinal fluids. Therefore, these SLNs could provide a suitable system to develop for the oral OXY delivery.
Keywords: Solid lipid nanoparticles, Physicochemical properties, in vitro drug release, Oxyresveratrol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3089369 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745368 Environmental and Economic Scenario Analysis of the Redundant Golf Courses in Japan
Authors: Osamu Saito
Abstract:
Commercial infrastructures intended for use as leisure retreats such as golf and ski resorts have been extensively developed in many rural areas of Japan. However, following the burst of the economic bubble in the 1990s, several existing resorts faced tough management decisions and some were forced to close their business. In this study, six alternative management options for restructuring the existing golf courses (park, cemetery, biofuel production, reforestation, pasturing and abandonment) are examined and their environmental and economic impacts are quantitatively assessed. In addition, restructuring scenarios of these options and an ex-ante assessment model are developed. The scenario analysis by Monte Carlo simulation shows a clear trade-off between GHG savings and benefit/cost (B/C) ratios, of which “Restoring Nature" scenario absorbs the most CO2 among the four scenarios considered, but its B/C ratio is the lowest. This study can be used to select or examine options and scenarios of golf course management and rural environmental management policies.Keywords: golf courses, restructuring and management options, scenario analysis, Tokyo Metropolitan Area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621367 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo
Abstract:
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364366 Automatic 2D/2D Registration using Multiresolution Pyramid based Mutual Information in Image Guided Radiation Therapy
Authors: Jing Jia, Shanqing Huang, Fang Liu, Qiang Ren, Gui Li, Mengyun Cheng, Chufeng Jin, Yican Wu
Abstract:
Medical image registration is the key technology in image guided radiation therapy (IGRT) systems. On the basis of the previous work on our IGRT prototype with a biorthogonal x-ray imaging system, we described a method focused on the 2D/2D rigid-body registration using multiresolution pyramid based mutual information in this paper. Three key steps were involved in the method : firstly, four 2D images were obtained including two x-ray projection images and two digital reconstructed radiographies(DRRs ) as the input for the registration ; Secondly, each pair of the corresponding x-ray image and DRR image were matched using multiresolution pyramid based mutual information under the ITK registration framework ; Thirdly, we got the final couch offset through a coordinate transformation by calculating the translations acquired from the two pairs of the images. A simulation example of a parotid gland tumor case and a clinical example of an anthropomorphic head phantom were employed in the verification tests. In addition, the influence of different CT slice thickness were tested. The simulation results showed that the positioning errors were 0.068±0.070, 0.072±0.098, 0.154±0.176mm along three axes which were lateral, longitudinal and vertical. The clinical test indicated that the positioning errors of the planned isocenter were 0.066, 0.07, 2.06mm on average with a CT slice thickness of 2.5mm. It can be concluded that our method with its verified accuracy and robustness can be effectively used in IGRT systems for patient setup.
Keywords: 2D/2D registration, image guided radiation therapy, multi resolution pyramid, mutual information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982365 Precise Measurement of Displacement using Pixels
Authors: Razif Mahadi, John Billingsley
Abstract:
Manufacturing processes demand tight dimensional tolerances. The paper concerns a transducer for precise measurement of displacement, based on a camera containing a linescan chip. When tests were conducted using a track of black and white stripes with a 2mm pitch, errors in measuring on individual cycle amounted to 1.75%, suggesting that a precision of 35 microns is achievable.Keywords: Linescan, microcontroller, pixels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321364 Ghost Frequency Noise Reduction through Displacement Deviation Analysis
Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran
Abstract:
Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.
Keywords: Displacement deviation analysis, gear whine, ghost frequency, sound quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803363 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators
Authors: M. A. Okezue, K. L. Clase, S. R. Byrn
Abstract:
The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.
Keywords: Data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516362 Time Series Forecasting Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.
Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168361 Predicting the Lack of GDP Growth: A Logit Model for 40 Advanced and Developing Countries
Authors: Hamidou Diallo, Marianne Guille
Abstract:
This paper identifies leading triggers of deficient episodes in terms of GDP growth based on a sample of countries at different stages of development over 1994-2017. Using logit models, we build early warning systems (EWS) and our results show important differences between developing countries (DCs) and advanced economies (AEs). For AEs, the main predictors of the probability of entering in a GDP growth deficient episode are the deterioration of external imbalances and the vulnerability of fiscal position while DCs face different challenges that need to be considered. The key indicators for them are first, the low ability to pay its debts and second, their belonging or not to a common currency area. We also build homogeneous pools of countries inside AEs and DCs. For AEs, the evolution of the proportion of countries in the riskiest pool is marked first, by three distinct peaks just after the high-tech bubble burst, the global financial crisis and the European sovereign debt crisis, and second by a very low minimum level in 2006 and 2007. In contrast, the situation of DCs is characterized first by a relative stability of this proportion and then by an upward trend from 2006, that can be explained by more unfavorable socio-political environment leading to shortcomings in the fiscal consolidation.
Keywords: GDP growth, early warning system, advanced economies, developing countries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 480360 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.
Keywords: ANFIS, MGT, Prediction modeling, rail track degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595359 FT-NIR Method to Determine Moisture in Gluten Free Rice Based Pasta during Drying
Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra
Abstract:
Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.
Keywords: FT-NIR, Pasta, moisture determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822358 Transmit Sub-aperture Optimization in MSTA Ultrasound Imaging Method
Authors: YuriyTasinkevych, Ihor Trots, AndrzejNowicki, Marcin Lewandowski
Abstract:
The paper presents the optimization problem for the multi-element synthetic transmit aperture method (MSTA) in ultrasound imaging applications. The optimal choice of the transmit aperture size is performed as a trade-off between the lateral resolution, penetration depth and the frame rate. Results of the analysis obtained by a developed optimization algorithm are presented. Maximum penetration depth and the best lateral resolution at given depths are chosen as the optimization criteria. The optimization algorithm was tested using synthetic aperture data of point reflectors simulated by Filed II program for Matlab® for the case of 5MHz 128-element linear transducer array with 0.48 mm pitch are presented. The visualization of experimentally obtained synthetic aperture data of a tissue mimicking phantom and in vitro measurements of the beef liver are also shown. The data were obtained using the SonixTOUCH Research systemequipped with a linear 4MHz 128 element transducerwith 0.3 mm element pitch, 0.28 mm element width and 70% fractional bandwidth was excited by one sine cycle pulse burst of transducer's center frequency.Keywords: synthetic aperture method, ultrasound imaging, beamforming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885357 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430356 Optimization of the Characteristic Straight Line Method by a “Best Estimate“ of Observed, Normal Orthometric Elevation Differences
Authors: Mahmoud M. S. Albattah
Abstract:
In this paper, to optimize the “Characteristic Straight Line Method" which is used in the soil displacement analysis, a “best estimate" of the geodetic leveling observations has been achieved by taking in account the concept of 'Height systems'. This concept has been discussed in detail and consequently the concept of “height". In landslides dynamic analysis, the soil is considered as a mosaic of rigid blocks. The soil displacement has been monitored and analyzed by using the “Characteristic Straight Line Method". Its characteristic components have been defined constructed from a “best estimate" of the topometric observations. In the measurement of elevation differences, we have used the most modern leveling equipment available. Observational procedures have also been designed to provide the most effective method to acquire data. In addition systematic errors which cannot be sufficiently controlled by instrumentation or observational techniques are minimized by applying appropriate corrections to the observed data: the level collimation correction minimizes the error caused by nonhorizontality of the leveling instrument's line of sight for unequal sight lengths, the refraction correction is modeled to minimize the refraction error caused by temperature (density) variation of air strata, the rod temperature correction accounts for variation in the length of the leveling rod' s Invar/LO-VAR® strip which results from temperature changes, the rod scale correction ensures a uniform scale which conforms to the international length standard and the introduction of the concept of the 'Height systems' where all types of height (orthometric, dynamic, normal, gravity correction, and equipotential surface) have been investigated. The “Characteristic Straight Line Method" is slightly more convenient than the “Characteristic Circle Method". It permits to evaluate a displacement of very small magnitude even when the displacement is of an infinitesimal quantity. The inclination of the landslide is given by the inverse of the distance reference point O to the “Characteristic Straight Line". Its direction is given by the bearing of the normal directed from point O to the Characteristic Straight Line (Fig..6). A “best estimate" of the topometric observations was used to measure the elevation of points carefully selected, before and after the deformation. Gross errors have been eliminated by statistical analyses and by comparing the heights within local neighborhoods. The results of a test using an area where very interesting land surface deformation occurs are reported. Monitoring with different options and qualitative comparison of results based on a sufficient number of check points are presented.
Keywords: Characteristic straight line method, dynamic height, landslides, orthometric height, systematic errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567355 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool
Authors: J. R. Wang, H. T. Lin, Y. S. Tseng, W. Y. Li, H. C. Chen, S. W. Chen, C. Shih
Abstract:
TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.Keywords: TRACE, FRAPTRAN, SNAP, spent fuel pool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417354 A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs
Authors: Muhammad Yasir Wadood, Fatemeh Babaeian
Abstract:
By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.
Keywords: Band-pass filters, inter-digital filter, microstrip, via-less.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834353 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems
Authors: Andrey V. Timofeev
Abstract:
A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDRsystem are presented.
Keywords: Guaranteed detection, C-OTDR systems, change point, interval estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986352 Compression and Filtering of Random Signals under Constraint of Variable Memory
Authors: Anatoli Torokhti, Stan Miklavcic
Abstract:
We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.Keywords: stochastic signals, optimization problems in signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331351 Text Mining Technique for Data Mining Application
Authors: M. Govindarajan
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.Keywords: C5.0, Error Ratio, text mining, training data, test data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489350 High Speed Video Transmission for Telemedicine using ATM Technology
Authors: J. P. Dubois, H. M. Chiu
Abstract:
In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.Keywords: ATM, multiplexing, queueing, telemedicine, VBR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744349 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured Global Navigation Satellite System Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite system (GNSS) denied settings, such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.
Keywords: Autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720348 Influence of Port Geometry on Thrust Transient of Solid Propellant Rockets at Liftoff
Authors: Karuppasamy Pandian. M, Krishna Raj. K, Sabarinath. K, Sandeep. G, Sanal Kumar. V.R.
Abstract:
Numerical studies have been carried out using a two dimensional code to examine the influence of pressure / thrust transient of solid propellant rockets at liftoff. This code solves unsteady Reynolds-averaged thin-layer Navier–Stokes equations by an implicit LU-factorization time-integration method. The results from the parametric study indicate that when the port is narrow there is a possibility of increase in pressure / thrust-rise rate due to relatively high flame spread rate. Parametric studies further reveal that flame spread rate can be altered by altering the propellant properties, igniter jet characteristics and nozzle closure burst pressure without altering the grain configuration and/or the mission demanding thrust transient. We observed that when the igniter turbulent intensity is relatively low the vehicle could liftoff early due to the early flow choking of the rocket nozzle. We concluded that the high pressurization-rate has structural implications at liftoff in addition to transient burning effect. Therefore prudent selection of the port geometry and the igniter, for meeting the mission requirements, within the given envelop are meaningful objectives for any designer for the smooth liftoff of solid propellant rockets.Keywords: Igniter Characteristics, Solid Propellant Rocket, SRM Liftoff, Starting Thrust Transient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784347 An Iterative Algorithm to Compute the Generalized Inverse A(2) T,S Under the Restricted Inner Product
Authors: Xingping Sheng
Abstract:
Let T and S be a subspace of Cn and Cm, respectively. Then for A ∈ Cm×n satisfied AT ⊕ S = Cm, the generalized inverse A(2) T,S is given by A(2) T,S = (PS⊥APT )†. In this paper, a finite formulae is presented to compute generalized inverse A(2) T,S under the concept of restricted inner product, which defined as < A,B >T,S=< PS⊥APT,B > for the A,B ∈ Cm×n. By this iterative method, when taken the initial matrix X0 = PTA∗PS⊥, the generalized inverse A(2) T,S can be obtained within at most mn iteration steps in absence of roundoff errors. Finally given numerical example is shown that the iterative formulae is quite efficient.Keywords: Generalized inverse A(2) T, S, Restricted inner product, Iterative method, Orthogonal projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257346 Behavioral and EEG Reactions in Native Turkic-Speaking Inhabitants of Siberia and Siberian Russians during Recognition of Syntactic Errors in Sentences in Native and Foreign Languages
Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatiana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena Mokur-ool, Nikolay A. Kolchano, Lyubomir I. Aftanas
Abstract:
The aim of the study is to compare behavioral and EEG reactions in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians during the recognition of syntax errors in native and foreign languages. Sixty-three healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. EEG were recorded during execution of error-recognition task in Russian and English language (in all participants) and in native languages (Tuvinian or Yakut Turkic-speaking inhabitants). Reaction time (RT) and quality of task execution were chosen as behavioral measures. Amplitude and cortical distribution of P300 and P600 peaks of ERP were used as a measure of speech-related brain activity. In Tuvinians, there were no differences in the P300 and P600 amplitudes as well as in cortical topology for Russian and Tuvinian languages, but there was a difference for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian language were the same as Russians had for native language. In Yakuts, brain reactions during Yakut and English language comprehension had no difference, while the Russian language comprehension was differed from both Yakut and English. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as foreign languages, but Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they do not use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.Keywords: EEG, brain activity, syntactic analysis, native and foreign language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065345 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.
Keywords: Regression model, social mood, stock market prediction, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434