Search results for: 14-3-3 docking genes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 164

Search results for: 14-3-3 docking genes

44 Enhance Halorespiration in Rhodopseudomonas palustris with Cytochrome P450cam System from Pseudomonas putida

Authors: Shou-Chen Lo, Chia-Ching Lin, Chieh-Chen Huang

Abstract:

To decompose organochlorides by bioremediation, co-culture biohydrogen producer and dehalogenation microorganisms is a useful method. In this study, we combined these two characteristics from a biohydrogen producer, Rhodopseudomonas palustris, and a dehalogenation microorganism, Pseudomonas putida, to enchance halorespiration in R. palustris. The genes encoding cytochrome P450cam system (camC, camA, and camB) from P. putida were expressed in R. palustris with designated expression plasmid. All tested strains were cultured to log phase then presented pentachloroethane (PCA) in media. The vector control strain could degrade PCA about 78% after 16 hours, however, the cytochrome P450cam system expressed strain, CGA-camCAB, could completely degrade PCA in 12 hours. While taking chlorinated aromatic, 3-chlorobenzoate, as sole carbon source or present benzoate as co-substrate, CGA-camCAB presented faster growth rate than vector control strain.

Keywords: cytochrome P450, halorespiration, nitrogen fixation, Rhodopseudomonas palustris CGA009

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
43 Identification of Differentially Expressed Gene(DEG) in Atherosclerotic Lesion by Annealing Control Primer (ACP)-Based Genefishing™ PCR

Authors: M. Maimunah, G. A. Froemming, H. Nawawi, M. I. Nafeeza, O. Effat, M. Y. Rosmadi, M. S. Mohamed Saifulaman

Abstract:

Atherosclerosis was identified as a chronic inflammatory process resulting from interactions between plasma lipoproteins, cellular components (monocyte, macrophages, T lymphocytes, endothelial cells and smooth muscle cells) and the extracellular matrix of the arterial wall. Several types of genes were known to express during formation of atherosclerosis. This study is carried out to identify unknown differentially expressed gene (DEG) in atherogenesis. Rabbit’s aorta tissues were stained by H&E for histomorphology. GeneFishing™ PCR analysis was performed from total RNA extracted from the aorta tissues. The DNA fragment from DEG was cloned, sequenced and validated by Real-time PCR. Histomorphology showed intimal thickening in the aorta. DEG detected from ACP-41 was identified as cathepsin B gene and showed upregulation at week-8 and week-12 of atherogenesis. Therefore, ACP-based GeneFishing™ PCR facilitated identification of cathepsin B gene which was differentially expressed during development of atherosclerosis.

Keywords: Atherosclerosis, GeneFishing™ PCR, cathepsin B gene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
42 In silico Analysis of Human microRNAs Targeting Influenza a Viruses (subtype H1N1, H5N1 and H3N2)

Authors: Kritsada Khongnomnan, Wittaya Poomipak, Yong Poovorawan, Sunchai Payungporn

Abstract:

In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) which naturally infected human were analyzed by bioinformatic approaches to find candidate human cellular miRNAs targeting viral genomes. There were 76 miRNAs targeting influenza A viruses. Among these candidates, 70 miRNAs were subtypes specifically targeting each subtype of influenza A virus including 21 miRNAs targeted subtype H1N1, 27 miRNAs targeted subtype H5N1 and 22 miRNAs targeted subtype H3N2. The remaining 6 miRNAs target on multiple subtypes of influenza A viruses. Uniquely, hsa-miR-3145 is the only one candidate miRNA targeting PB1 gene of all three subtypes. Obviously, most of the candidate miRNAs are targeting on polymerase complex genes (PB2, PB1 and PA) of influenza A viruses. This study predicted potential human miRNAs targeting on different subtypes of influenza A viruses which might be useful for inhibition of viral replication and for better understanding of the interaction between virus and host cell.

Keywords: Human miRNAs, Influenza A viruses, H1N1, H5N1, H3N2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
41 A Novel Genetic Algorithm Designed for Hardware Implementation

Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras

Abstract:

A new genetic algorithm, termed the 'optimum individual monogenetic genetic algorithm' (OIMGA), is presented whose properties have been deliberately designed to be well suited to hardware implementation. Specific design criteria were to ensure fast access to the individuals in the population, to keep the required silicon area for hardware implementation to a minimum and to incorporate flexibility in the structure for the targeting of a range of applications. The first two criteria are met by retaining only the current optimum individual, thereby guaranteeing a small memory requirement that can easily be stored in fast on-chip memory. Also, OIMGA can be easily reconfigured to allow the investigation of problems that normally warrant either large GA populations or individuals many genes in length. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of a range of existing hardware GA implementations.

Keywords: Genetic algorithms, genetic hardware, machinelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
40 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin- Staphylococcus aureus Infections

Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu

Abstract:

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Keywords: Dihydroxyacetone kinase, essential genes, Methicillin-resistant Staphylococcus aureus, drug target.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
39 Evaluation of Some Prominent Biomarkers in Rural Type – 2 Diabetes Mellitus Cases in Kanyakumari District, Tamil Nadu, India

Authors: Murugan. A., Jerlin Nirmala. F .

Abstract:

Life is beautiful. But, it is decided by genes, environment and the individual and shattered by the natural and / or the invited problems. Most of the global rural helpless masses are struggling for their survival since; they are neglected in all aspects of life including health. Amidst a countless number of miserable diseases in man, diabetes is becoming a dreaded killer and ramifying the entire globe in a jet speed. Diabetes control continues as a Herculean task to the scientific community and the modern society in the 21st century also. T2DM is not pertaining to any age and it can develop even during the childhood. This multifactorial disease abruptly changes the activities of certain vital biomarkers in the present rural T2DM cases. A remarkable variation in the levels of biomarkers like AST, ALT, GGT, ALP, LDH, HbA1C, C- peptide, fasting sugar, post-prandial sugar, sodium, potassium, BUN, creatinine and insulin show the rampant nature of T2DM in this physically active rural agrarian community.

Keywords: Alanine aminotransferase, Aspartate aminotransferase, Blood urea nitrogen, Glycated haemoglobin, Thyroid stimulating hormone

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
38 Molecular Characterization of Echinococcus granulosus through Amplification of 12S rRNA Gene and Cox1 Gene Fragments from Cattle in Chittagong, Bangladesh

Authors: M. Omer Faruk, A. M. A. M. Zonaed Siddiki, M. Fazal Karim, Md. Masuduzzaman, S. Chowdhury, Md. Shafiqul Islam, M. Alamgir Hossain

Abstract:

The dog tapeworms Echinococcus granulosus develop hydatid cysts in various organs in human and domestic animals worldwide including Bangladesh. The aim of this study was to identify and characterize the genotype of E. granulosus isolated from cattle using 12S rRNA and Cytochrome oxidase 1 (COX 1) genes. A total of 43 hydatid cyst samples were collected from 390 examined cattle samples derived from slaughterhouses. Among them, three cysts were fertile. Genomic DNA was extracted from germinal membrane and/or protoscoleces followed by PCR amplification of mitochondrial 12S rRNA and Cytochrome oxidase 1 gene fragments. The sequence data revealed existence of G1 (64.28%) and possible G3 (21.43%) genotypes for the first time in Bangladesh. The study indicates that common sheep strain G1 is the dominant subtype of E. granulosus in Chittagong region of Bangladesh. This will increase our understanding of the epidemiology of hydatidosis in the southern part of the country and will be useful to plan suitable control measures in the long run.

Keywords: Echinococcus granulosus, molecular characterization, cattle, Bangladesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
37 Binding of miR398 to mRNA of Chaperone and Superoxide Dismutase Genes in Plants

Authors: Assyl Bari, Olga Berillo, Saltanat Orazova, Anatoliy Ivashchenko

Abstract:

Among all microRNAs (miRNAs) in 12 plant species investigated in this study, only miR398 targeted the copper chaperone for superoxide dismutase (CCS). The nucleotide sequences of miRNA binding sites were located in the mRNA protein-coding sequence (CDS) and were highly homologous. These binding sites in CCS mRNA encoded a conservative GDLGTL hexapeptide. The binding sites for miR398 in the CDS of superoxide dismutase 1 mRNA encoded GDLGN pentapeptide. The conservative miR398 binding site located in the CDS of superoxide dismutase 2 mRNA encoded the GDLGNI hexapeptide. The miR398 binding site in the CDS of superoxide dismutase 3 mRNA encoded the GDLGNI or GDLGNV hexapeptide. Gene expression of the entire superoxide dismutase family in the studied plant species was regulated only by miR398. All members of the miR398 family, i.e. miR398a,b,c were connected to one site for each CuZnSOD and chaperone mRNA.

Keywords: MicroRNA, mRNA, plant, superoxide dismutase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
36 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding

Authors: Mohd A. Mezher, Maysam F. Abbod

Abstract:

Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.

Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
35 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: Synthetic gene network, network identification, nonlinear modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
34 Neural Network Based Determination of Splice Junctions by ROC Analysis

Authors: S. Makal, L. Ozyilmaz, S. Palavaroglu

Abstract:

Gene, principal unit of inheritance, is an ordered sequence of nucleotides. The genes of eukaryotic organisms include alternating segments of exons and introns. The region of Deoxyribonucleic acid (DNA) within a gene containing instructions for coding a protein is called exon. On the other hand, non-coding regions called introns are another part of DNA that regulates gene expression by removing from the messenger Ribonucleic acid (RNA) in a splicing process. This paper proposes to determine splice junctions that are exon-intron boundaries by analyzing DNA sequences. A splice junction can be either exon-intron (EI) or intron exon (IE). Because of the popularity and compatibility of the artificial neural network (ANN) in genetic fields; various ANN models are applied in this research. Multi-layer Perceptron (MLP), Radial Basis Function (RBF) and Generalized Regression Neural Networks (GRNN) are used to analyze and detect the splice junctions of gene sequences. 10-fold cross validation is used to demonstrate the accuracy of networks. The real performances of these networks are found by applying Receiver Operating Characteristic (ROC) analysis.

Keywords: Gene, neural networks, ROC analysis, splice junctions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
33 Cutaneous Application of Royal Jelly Inhibits Skin Lesions in NC/Nga Mice, a Human-Like Mouse Model of Atopic Dermatitis

Authors: Junki Miyamoto, Mariko Kiyomi, Yuuki Nagashio, Takuya Suzuki, Soichi Tanabe

Abstract:

Anti-allergic effects of royal jelly were evaluated in a human-like mouse model of atopic dermatitis. NC/Nga mice were cutaneously applied with royal jelly for 6 weeks. Royal jelly-treated mice exhibited lower levels of serum total immunoglobulin E in comparison with controls. We found that the treatment decreased (11% to the control) expression of mRNA for aquaporin-3, which is involved in the modulation of epidermal hydration. Microarray analysis revealed more than 10-fold changes in the expression of several genes, such as transglutaminase 2, repetin, and keratins. In normal human epidermal keratinocytes, royal jelly extract suppressed interleukin-8 elevation induced by TNF-α and interferon-γ, suggesting direct anti-inflammatory activity in keratinocytes. Collectively, topical application of royal jelly may be useful for amelioration of lesions and inflammation in atopic dermatitis.

Keywords: Aquaporin 3, immunoglobulin E, NC/Nga, royal jelly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
32 Cloning and Expression of D-Threonine Aldolase from Ensifer arboris NBRC100383

Authors: Sang-Ho Baik

Abstract:

D-erythro-cyclohexylserine (D chiral unnatural β-hydroxy amino acid expected for the synthesis of drug for AIDS treatment. To develop a continuous bioconversion system with whole cell biocatalyst of D-threonine aldolase (D genes for the D-erythro-CHS production, D-threonine aldolase gene was amplified from Ensifer arboris 100383 by direct PCR amplication using two degenerated oligonucleotide primers designed based on genomic sequence of Shinorhizobium meliloti Sequence analysis of the cloned DNA fragment revealed one open-reading frame of 1059 bp and 386 amino acids. This putative D-TA gene was cloned into NdeI and EcoRI (pEnsi His-tag sequence or BamHI (pEnsi-DTA[2]) sequence of the pET21(a) vector. The expression level of the cloned gene was extremely overexpressed by E. coli BL21(DE3) transformed with pEnsi-DTA[1] compared to E. coli BL21(DE3) transformed with pEnsi-DTA[2]. When the cells expressing the wild used for D-TA enzyme activity, 12 mM glycine was successfully detected in HPLC analysis. Moreover, the whole cells harbouring the recombinant D-TA was able to synthesize D-erythro of 0.6 mg/ml in a batch reaction.

Keywords: About four key words or phrases in alphabetical order, separated by commas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
31 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data

Authors: Rameswar Debnath, Haruhisa Takahashi

Abstract:

An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.

Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
30 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an ‘optimal’ value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: Cross Validation, Parameter Averaging, Parameter Selection, Regularization Parameter Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
29 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data

Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha

Abstract:

Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.

Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
28 Isolation and Identification of Diacylglycerol Acyltransferase Type- 2 (GAT2) Genes from Three Egyptian Olive Cultivars

Authors: Yahia I. Mohamed, Ahmed I. Marzouk, Mohamed A. Yacout

Abstract:

Aim of this work was to study the genetic basis for oil accumulation in olive fruit via tracking DGAT2 (Diacylglycerol acyltransferase type-2) gene in three Egyptian Origen Olive cultivars namely Toffahi, Hamed and Maraki using molecular marker techniques and bioinformatics tools. Results illustrate that, firstly: specific genomic band of Maraki cultivars was identified as DGAT2 (Diacylglycerol acyltransferase type-2) and identical for this gene in Olea europaea with 100% of similarity. Secondly, differential genomic band of Maraki cultivars which produced from RAPD fingerprinting technique reflected predicted distinguished sequence which identified as DGAT2 (Diacylglycerol acyltransferase type-2) in Fragaria vesca subsp. Vesca with 76% of sequential similarity. Third and finally, specific genomic specific band of Hamed cultivars was identified as two fragments, 1- Olea europaea cultivar Koroneiki diacylglycerol acyltransferase type 2 mRNA, complete cds with two matches regions with 99% or 2- Predicted: Fragaria vesca subsp. vesca diacylglycerol O-acyltransferase 2-like (LOC101313050), mRNA with 86 % of similarity.

Keywords: Olea europaea, fingerprinting, Diacylglycerol acyltransferase type- 2 (DGAT2).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
27 The Comparation of Activation Nuclear Factor Kappa Beta (NFKB) at Rattus Novergicus Strain Wistar Induced by Various Duration High Fat Diet (HFD)

Authors: Titin Andri Wihastuti, Djanggan Sargowo

Abstract:

NFκB is a transcription factor regulating many function of the vessel wall. In the normal condition , NFκB is revealed diffuse cytoplasmic expressionsuggesting that the system is inactive. The presence of activation NFκB provide a potential pathway for the rapid transcriptional of a variety of genes encoding cytokines, growth factors, adhesion molecules and procoagulatory factors. It is likely to play an important role in chronic inflamatory disease involved atherosclerosis. There are many stimuli with the potential to active NFκB, including hyperlipidemia. We used 24 mice which was divided in 6 groups. The HFD given by et libitum procedure during 2, 4, and 6 months. The parameters in this study were the amount of NFKB activation ,H2O2 as ROS and VCAM-1 as a product of NFKB activation. H2O2 colorimetryc assay performed directly using Anti Rat H2O2 ELISA Kit. The NFKB and VCAM-1 detection obtained from aorta mice, measured by ELISA kit and imunohistochemistry. There was a significant difference activation of H2O2, NFKB and VCAM-1 level at induce HFD after 2, 4 and 6 months. It suggest that HFD induce ROS formation and increase the activation of NFKB as one of atherosclerosis marker that caused by hyperlipidemia as classical atheroschlerosis risk factor.

Keywords: High Fat Diet, NFKB, H2O2, atherosclerosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
26 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
25 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.

Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
24 Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis

Authors: Maryam Saeidi, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner–Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors.

Keywords: Genome-scale metabolic model, Zymomonas mobilis, uncoupled growth, flux distribution, ATP dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
23 An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data

Authors: M. Pandi, K. Premalatha

Abstract:

The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.

Keywords: Spread out, simplex, multi-minima, fitness function, optimization, search area, monocyte, solution, genomes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
22 Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms

Authors: Chia-Ta Tsai, Wen-Lin Huang, Shinn-Jang Ho, Li-Sun Shu, Shinn-Ying Ho

Abstract:

Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features.

Keywords: Bacterial virulence factors, GO terms, prediction, protein sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
21 A Simple Affymetrix Ratio-transformation Method Yields Comparable Expression Level Quantifications with cDNA Data

Authors: Chintanu K. Sarmah, Sandhya Samarasinghe, Don Kulasiri, Daniel Catchpoole

Abstract:

Gene expression profiling is rapidly evolving into a powerful technique for investigating tumor malignancies. The researchers are overwhelmed with the microarray-based platforms and methods that confer them the freedom to conduct large-scale gene expression profiling measurements. Simultaneously, investigations into cross-platform integration methods have started gaining momentum due to their underlying potential to help comprehend a myriad of broad biological issues in tumor diagnosis, prognosis, and therapy. However, comparing results from different platforms remains to be a challenging task as various inherent technical differences exist between the microarray platforms. In this paper, we explain a simple ratio-transformation method, which can provide some common ground for cDNA and Affymetrix platform towards cross-platform integration. The method is based on the characteristic data attributes of Affymetrix- and cDNA- platform. In the work, we considered seven childhood leukemia patients and their gene expression levels in either platform. With a dataset of 822 differentially expressed genes from both these platforms, we carried out a specific ratio-treatment to Affymetrix data, which subsequently showed an improvement in the relationship with the cDNA data.

Keywords: Gene expression profiling, microarray, cDNA, Affymetrix, childhood leukaemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
20 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc

Abstract:

Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, frictional heat generation, process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
19 Rapid Determination of Biochemical Oxygen Demand

Authors: Mayur Milan Kale, Indu Mehrotra

Abstract:

Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.

Keywords: BOD, Four methods, Rapid estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3640
18 Cold Hardiness in Near Isogenic Lines of Bread Wheat (Triticum Aestivum L. em. Thell.)

Authors: Abolfazl Rashidi Asl, Siroos Mahfoozi, Mohammad Reza Bihamta

Abstract:

Low temperature (LT) is one of the most abiotic stresses causing loss of yield in wheat (T. aestivum). Four major genes in wheat (Triticum aestivum L.) with the dominant alleles designated Vrn–A1,Vrn–B1,Vrn–D1 and Vrn4, are known to have large effects on the vernalization response, but the effects on cold hardiness are ambiguous. Poor cold tolerance has restricted winter wheat production in regions of high winter stress [9]. It was known that nearly all wheat chromosomes [5] or at least 10 chromosomes of 21 chromosome pairs are important in winter hardiness [15]. The objective of present study was to clarify the role of each chromosome in cold tolerance. With this purpose we used 20 isogenic lines of wheat. In each one of these isogenic lines only a chromosome from ‘Bezostaya’ variety (a winter habit cultivar) was substituted to ‘Capple desprez’ variety. The plant materials were planted in controlled conditions with 20º C and 16 h day length in moderately cold areas of Iran at Karaj Agricultural Research Station in 2006-07 and the acclimation period was completed for about 4 weeks in a cold room with 4º C. The cold hardiness of these isogenic lines was measured by LT50 (the temperature in which 50% of the plants are killed by freezing stress).The experimental design was completely randomized block design (RCBD)with three replicates. The results showed that chromosome 5A had a major effect on freezing tolerance, and then chromosomes 1A and 4A had less effect on this trait. Further studies are essential to understanding the importance of each chromosome in controlling cold hardiness in wheat.

Keywords: Cold hardiness, isogenic lines, LT50 , Triticum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
17 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods

Authors: Huihai Wu, Xiaohui Liu

Abstract:

Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.

Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
16 Microbial Contaminants in Drinking Water Collected from Different Regions of Kuwait

Authors: Abu Salim Mustafa

Abstract:

Water plays a major role in maintaining life on earth, but it can also serve as a matrix for pathogenic organisms, posing substantial health threats to humans. Although, outbreaks of diseases attributable to drinking water may not be common in industrialized countries, they still occur and can lead to serious acute, chronic, or sometimes fatal health consequences. The analysis of drinking water samples from different regions of Kuwait was performed in this study for bacterial and viral contaminations. Drinking tap water samples were collected from 15 different locations of the six Kuwait governorates. All samples were analyzed by confocal microscopy for the presence of bacteria. The samples were cultured in vitro to detect cultivable organisms. DNA was isolated from the cultured organisms and the identity of the bacteria was determined by sequencing the bacterial 16S rRNA genes, followed by BLAST analysis in the database of NCBI, USA. RNA was extracted from water samples and analyzed by real-time PCR for the detection of viruses with potential health risks, i.e. Astrovirus, Enterovirus, Norovirus, Rotavirus, and Hepatitis A. Confocal microscopy showed the presence of bacteria in some water samples. The 16S rRNA gene sequencing of culture grown organisms, followed by BLAST analysis, identified the presence of several non-pathogenic bacterial species. However, one sample had Acinetobacter baumannii, which often causes opportunistic infections in immunocompromised people, but none of the studied viruses could be detected in the drinking water samples analyzed. The results indicate that drinking water samples analyzed from various locations in Kuwait are relatively safe for drinking and do not contain many harmful pathogens.

Keywords: Drinking water, 16S rRNA, microbial diversity, viruses, Kuwait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
15 Genome-Wide Analysis of BES1/BZR1 Gene Family in Five Plant Species

Authors: Jafar Ahmadi, Zhohreh Asiaban, Sedigheh Fabriki Ourang

Abstract:

Brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence, and stress responses. BRs signal through the BES1/BZR1 family of transcription factors, which regulate hundreds of target genes involved in this pathway. In this research a comprehensive genome-wide analysis was carried out in BES1/BZR1 gene family in Arabidopsis thaliana, Cucumis sativus, Vitis vinifera, Glycin max and Brachypodium distachyon. Specifications of the desired sequences, dot plot and hydropathy plot were analyzed in the protein and genome sequences of five plant species. The maximum amino acid length was attributed to protein sequence Brdic3g with 374aa and the minimum amino acid length was attributed to protein sequence Gm7g with 163aa. The maximum Instability index was attributed to protein sequence AT1G19350 equal with 79.99 and the minimum Instability index was attributed to protein sequence Gm5g equal with 33.22. Aliphatic index of these protein sequences ranged from 47.82 to 78.79 in Arabidopsis thaliana, 49.91 to 57.50 in Vitis vinifera, 55.09 to 82.43 in Glycin max, 54.09 to 54.28 in Brachypodium distachyon 55.36 to 56.83 in Cucumis sativus. Overall, data obtained from our investigation contributes a better understanding of the complexity of the BES1/BZR1 gene family and provides the first step towards directing future experimental designs to perform systematic analysis of the functions of the BES1/BZR1 gene family.

Keywords: BES1/BZR1, Brassinosteroids, Phylogenetic analysis, Transcription factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255