Microbial Contaminants in Drinking Water Collected from Different Regions of Kuwait
Authors: Abu Salim Mustafa
Abstract:
Water plays a major role in maintaining life on earth, but it can also serve as a matrix for pathogenic organisms, posing substantial health threats to humans. Although, outbreaks of diseases attributable to drinking water may not be common in industrialized countries, they still occur and can lead to serious acute, chronic, or sometimes fatal health consequences. The analysis of drinking water samples from different regions of Kuwait was performed in this study for bacterial and viral contaminations. Drinking tap water samples were collected from 15 different locations of the six Kuwait governorates. All samples were analyzed by confocal microscopy for the presence of bacteria. The samples were cultured in vitro to detect cultivable organisms. DNA was isolated from the cultured organisms and the identity of the bacteria was determined by sequencing the bacterial 16S rRNA genes, followed by BLAST analysis in the database of NCBI, USA. RNA was extracted from water samples and analyzed by real-time PCR for the detection of viruses with potential health risks, i.e. Astrovirus, Enterovirus, Norovirus, Rotavirus, and Hepatitis A. Confocal microscopy showed the presence of bacteria in some water samples. The 16S rRNA gene sequencing of culture grown organisms, followed by BLAST analysis, identified the presence of several non-pathogenic bacterial species. However, one sample had Acinetobacter baumannii, which often causes opportunistic infections in immunocompromised people, but none of the studied viruses could be detected in the drinking water samples analyzed. The results indicate that drinking water samples analyzed from various locations in Kuwait are relatively safe for drinking and do not contain many harmful pathogens.
Keywords: Drinking water, 16S rRNA, microbial diversity, viruses, Kuwait.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856References:
[1] K. A. Reynolds, K.D. Mena, and C.P. Gerba, “Risk of waterborne illness via drinking water in the United States,” Rev Environ Contam Toxicol. Vol. 192, pp. 117-158, 2002.
[2] R. Cidu, F. Franco, and T. Paolo, “Drinking water quality: Comparing inorganic components in bottled water and Italian tap water”, J Food Compos Analysis, vol. 24: pp. 184-193, 2011.
[3] A. F. Maheux, V. Huppé, L. Bissonnette , M. Boissinot, L. Rodrigue, E. Bérubé, M. G. Bergeron M, “Comparative analysis of classical and molecular microbiology methods for the detection of Escherichia coli and Enterococcus sp in well water”, J Environ Monit, Vol. 14, pp. 2983-2989, 2012.
[4] U. Szewzyk, R. Szewzyk, W. Manz, and K. H. Schleifer, “Microbiological safety of drinking water”, Annu Rev Microbiol, vol. 54, pp. 81-127, 2000.
[5] I. Brettar, and M.G. Höfle, 2008, “Molecular assessment of bacterial pathogens - a contribution to drinking water safety”, Curr Opin Biotechnol, Vol. 19, pp. 274-280, 2008.
[6] J. A. Heinemann, H. Rosén, M. Savill, S. Burgos-Caraballo, and Toranzos GA, “Environment arrays: a possible approach for predicting changes in waterborne bacterial disease potential”, Environ Sci Technol, vol. 40, pp.7150-7156, 2006.
[7] L. Kahlisch, K. Henne, L. Gröbe, I. Brettar, and M. G.Höfle, “Assessing the viability of bacterial species in drinking water by combined cellular and molecularanalyses”, Microb Ecol, Vol. 63: pp. 383-397, 2012.
[8] R. Girones, M. A. Ferrús, J. L. Alonso, J. Rodriguez-Manzano, B. Calgua, A. Corrêa Ade, A. Hundesa, Carratala A, and S. Bofill-Mas, “Molecular detection of pathogens in water--the pros and cons of molecular techniques”, Water Res, Vol. 44, pp. 4325-4339, 2010.
[9] F. M. Al-Ruwaih, J. M. Alhumoud, and S. M. Al-Mutairi, “Quality of Potable Water in Kuwait”, Am J Environ Sci 6: 260-267, 2010.
[10] US-EPA, 2013, “Integrated Risk Information System (IRIS)-A-Z List of Substances, http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction= iris.showSubstanceList
[11] S. Jobling, and J. P. Sumpter, “Detergent Components in Sewage Effluent are Weakly Estrogenic to Fish: An in vitro study using rainbow trout (Onchorynchus mykiss) hepatocytes”, AquatToxicol, vpl. 27, pp. 361-732, 2012.
[12] Q. A. Al-Matawah, S. F. Al-Zenki, J. A. Qasem, T. E. Al-Waalan, and A. H. Ben Heji, “Detection and quantification of Legionella pneumophila from water systems in Kuwait residential facilities”, J Pathog, vol. 2012, Article ID 138389, pp. 1-5, 2012.
[13] D. Mount, “Bioinformatics: Sequence and Genome Analysis”, 2nd ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, ISBN 978-087969712-9, 2004.
[14] F. Y. Ramírez-Castillo, A. Loera-Muro, M. Jacques, P. Garneau, F. J. Avelar-González, J. Harel J, A. L. Guerrero-Barrera, “Waterborne pathogens: detection methods and challenges” Pathogens. Vol. 4, pp. 307-334, 2015.
[15] G. Bitton, “Microbiology of drinking water production and distribution”, 1st ed. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 312, 2014.
[16] M. Ingerson-Mahar, A. Reid, “Microbes in pipes: the microbiology of the water distribution system a report on an American Academy of Microbiology Colloquium”, ASM Academy; Boulder, CO, USA: pp. 26, 2012.
[17] F. S. Alhamlan, A. A. Al-Qahtani, M. N. Al-Ahdal, “Recommended advanced techniques for waterborne pathogen detection in developing countries”, J. Infect. Dev. Ctries, Vol. 9, pp.128-135, 2015.
[18] H. Leclerc, L. Schwartzbrod, E. Dei-Cas, “Microbial agents associated with waterborne diseases, Crit. Rev. Microbiol, Vol. 28, 371-409, 2002.
[19] M. Bogusz, S. Whelan, “Phylogenetic tree estimation with and without alignment: new distance methods and benchmarking”, Systematic Biology, vol. 66, pp. 218–231, 2017.
[20] J. Yeom, J. H. Shin, J. Y. Yang, J. Kim, and G. S. Hwang, “NMR-based metabolite profiling of planktonic and biofilm cells in Acinetobacter baumannii”, PloS one, vol. 8: e57730, 2013.
[21] L. B. Rice LB, “Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE”, J Infect Dis, vol. 197, pp. 1079–1081, 2008.
[22] A. Y. Peleg, H. Seifert, D. L. Paterson, “Acinetobacter baumannii: emergence of a successful pathogen,” Clin. Microbiol. Rev. 2008; vol. 21, pp. 538–582, 2008
[23] H. Giamarellou, A. Antoniadou, K. Kanellakopoulou, “Acinetobacter baumannii: a universal threat to public health?”, Intern. J. Antimicrob. Agents, vol. 32, pp. 106-119, 2008.
[24] D. Wong, T. B. Nielsen, R. A. Bonomo, P. Pantapalangkoor P, B. Luna, B. Spellberg, “Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin. Microbiol. Rev. vol. 30, pp. 409–447, 2017.
[25] S. G. Joshi, G. M. Litake, “Acinetobacter baumannii: an emerging pathogenic threat to public health,” World J. Clin. Infect. Dis. Vol. 3, pp. 25-36, 2013.
[26] E. C. Eze, H. Y. Chenia, M. E. El Zowalaty, “Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments”, Infect. Drug Resist, vol. 11, pp. 2277–2299, 2018.
[27] M. Asif, I. A. Alvi, S. U. Rehman, “Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities”, Infect. Drug Resist. Vol.11, pp.1249–1260, 2018.
[28] C. R. Lee, J. H. Lee JH, M. Park, K. S. Park, I. K. Bae, Y. B. Kim, C. J. Cha, B. C. Jeong, S. H. Lee, “Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options”, Front. Cell. Infect. Microbiol. Vol. 7, 55, 2017.
[29] S. N. Abdi, R. Ghotaslou, K. Ganbarov K, A. Mobed, A. Tanomand, M. Yousefi, M. Asgharzadeh, H. S. Kafil, “Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect. Drug Resist. Vol. 13, pp. 423–434, 2020.
[30] L. Baert, K. Mattison, F. Loisy-Hamon, J. Harlow, A. Martyres, B. Lebeau, A. Stals, E. Van Coillie, L. Herman, and M. Uyttendaele, “Review: norovirus prevalence in Belgian, Canadian and French fresh produce: a threat to human health?”, Int J Food Microbiol, vol. 151, pp. 261-269, 2011.
[31] S. Butot, T. Putallaz, C. Croquet, G. Lamothe, R. Meyer, H. Joosten, and G. Sánchez G, “Attachment of enteric viruses to bottles”. Appl Environ Microbiol, vol. 73, pp. 5104-5110, 2007.
[32] K. D. Mena, and C.P. Gerba, 2009, “Waterborne adenovirus”, Rev Environ Contam Toxicol, vol.198, pp. 133-167, 2009.
[33] D. Rodríguez-Lázaro, N. Cook, F. M. Ruggeri, J. Sellwood, A. Nasser, M. S. Nascimento, M. D'Agostino, R. Santos, A. Saiz JC, Rzeżutka, A. Bosch, R. Gironés, A. Carducci, M. Muscillo, K. Kovač, M. Diez-Valcarce, A. Vantarakis, C. H. von Bonsdorff , A. M. de Roda Husman, M. Hernández, and W. H. van der Poel, “Virus hazards from food, water and other contaminated environments”, FEMS Microbiol Rev, vol. 36, pp. 786-814, 2012.
[34] R. Poretsky, L. M. Rodriguez-R, C. Luo, D. Tsementzi, K. T Konstantinidis, “Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics”, PLoS One, vol. 9, e93827, 2014.
[35] E. Lee, E. Kim, Y. Shin, J. Song, “Design and testing of multiplex RT-PCR primers for the rapid detection of influenza A virus genomic segments: Application to equine influenza virus,” J. Virol. Methods, vol. 228, pp. 114 – 122, 2016.
[36] E. A. Oniciuc, E. Likotrafiti, A. Alvarez-Molina, M. Prieto, J. A. Santos, A. Alvarez-Ordóñez, “The present and future of whole genome sequencing (WGS) and whole metagenome sequencing (WMS) for surveillance of antimicrobial resistant microorganisms and antimicrobial resistance genes across the food chain”, Genes (Basel), vol. 9, 268, 2018.