Search results for: skin detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1709

Search results for: skin detection

299 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
298 Enzymes Activity in Bovine Cervical Mucus Related to the Time of Ovulation And Insemination

Authors: S. Benbia, A.Kalla, M. Yahia, K. Belhadi, A. Zidani

Abstract:

Forty-five dairy cows were used to compare the enzyme activity of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), α -amylase in the cervical mucus of cows during spontaneous and induced estrus using progestagen or PGF2 α and to determine whether these enzymes affect the fertility in cows with induced estrus, at the time of Al. The animals were assigned to 3 groups (no treatment, a Crestar® for 12 days, a double im injection of PGF2 α). The cows were artificially inseminated (AI). Cervical mucus samples were collected from all cows 3 to 5 min before the AI. The results are summarized as follows: ALP and α -amylase activity for spontaneous estrus were similar to those for induced estrus (P>0.05) . LDH activity levels during spontaneous and PGF2 α induced estrus was significantly lower (P < 0.001) than that in progestagene induced estrus groups. While no difference was found between the first and the third groups. Our result showed a significant difference in LDH activity levels between cows conceived with 2 or more AI and those conceived with 1 AI. The result of this study showed that the enzyme activity in cervical mucus is helpful for detection of ovulation and time of AI.

Keywords: cervical mucus, dairy cow, enzyme, induced, estrus, ovulation, AI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
297 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring

Authors: Ebrahim Farahmand, Ali Mahani

Abstract:

Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.

Keywords: Clustering of WSNs, healthcare monitoring, weight-based clustering, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
296 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
295 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: Autonomous surveillance, Bayesian reasoning, decision-support, interventions, patterns-of-life, predictive analytics, predictive insights.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
294 Detection and Correction of Ectopic Beats for HRV Analysis Applying Discrete Wavelet Transforms

Authors: Desmond B. Keenan

Abstract:

The clinical usefulness of heart rate variability is limited to the range of Holter monitoring software available. These software algorithms require a normal sinus rhythm to accurately acquire heart rate variability (HRV) measures in the frequency domain. Premature ventricular contractions (PVC) or more commonly referred to as ectopic beats, frequent in heart failure, hinder this analysis and introduce ambiguity. This investigation demonstrates an algorithm to automatically detect ectopic beats by analyzing discrete wavelet transform coefficients. Two techniques for filtering and replacing the ectopic beats from the RR signal are compared. One technique applies wavelet hard thresholding techniques and another applies linear interpolation to replace ectopic cycles. The results demonstrate through simulation, and signals acquired from a 24hr ambulatory recorder, that these techniques can accurately detect PVC-s and remove the noise and leakage effects produced by ectopic cycles retaining smooth spectra with the minimum of error.

Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, wavelets, ectopic beats, spectral analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
293 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: Video surveillance, disentanglement, face detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
292 The First Prevalence Report of Direct Identification and Differentiation of B. abortus and B. melitensis using Real Time PCR in House Mouse of Iran

Authors: A. Doosti, S. Moshkelani

Abstract:

Brucellosis is a zoonotic disease; its symptoms and appearances are not exclusive in human and its traditional diagnosis is based on culture, serological methods and conventional PCR. For more sensitive, specific detection and differentiation of Brucella spp., the real time PCR method is recommended. This research has performed to determine the presence and prevalence of Brucella spp. and differentiation of Brucella abortus and Brucella melitensis in house mouse (Mus musculus) in west of Iran. A TaqMan analysis and single-step PCR was carried out in total 326 DNA of Mouse's spleen samples. From the total number of 326 samples, 128 (39.27%) gave positive results for Brucella spp. by conventional PCR, also 65 and 32 out of the 128 specimens were positive for B. melitensis, B. abortus, respectively. These results indicate a high presence of this pathogen in this area and that real time PCR is considerably faster than current standard methods for identification and differentiation of Brucella species. To our knowledge, this study is the first prevalence report of direct identification and differentiation of B. abortus and B. melitensis by real time PCR in mouse tissue samples in Iran.

Keywords: Differentiation, B. abortus, B. melitensis, TaqManprobe, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
291 Design of a Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments require developed detection by an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBGs) are emerging sensing instruments that respond to variations in strain and temperature by varying wavelengths. In this study, a cascaded uniform FBG is designed as a strain sensor for 6 km length at 1550 nm wavelength with 30 °C temperature by analyzing dynamic strain and wavelength shifts. The FBG is placed in a small segment of an optical fiber that reflects light with a specific wavelength and passes on the remaining wavelengths. Consequently, periodic alteration occurs in the refractive index in the fiber core. The alteration in the modal index of the fiber is produced by strain effects on a Bragg wavelength. When the developed sensor is exposed to the strain (0.01) of the cascaded uniform FBG, the wavelength shifts by 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show the reliability and effectiveness of the strain monitoring sensor for remote sensing application.

Keywords: Remote sensing, cascaded fiber Bragg grating, strain sensor, wavelength shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
290 DCBOR: A Density Clustering Based on Outlier Removal

Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Data clustering is an important data exploration technique with many applications in data mining. We present an enhanced version of the well known single link clustering algorithm. We will refer to this algorithm as DCBOR. The proposed algorithm alleviates the chain effect by removing the outliers from the given dataset. So this algorithm provides outlier detection and data clustering simultaneously. This algorithm does not need to update the distance matrix, since the algorithm depends on merging the most k-nearest objects in one step and the cluster continues grow as long as possible under specified condition. So the algorithm consists of two phases; at the first phase, it removes the outliers from the input dataset. At the second phase, it performs the clustering process. This algorithm discovers clusters of different shapes, sizes, densities and requires only one input parameter; this parameter represents a threshold for outlier points. The value of the input parameter is ranging from 0 to 1. The algorithm supports the user in determining an appropriate value for it. We have tested this algorithm on different datasets contain outlier and connecting clusters by chain of density points, and the algorithm discovers the correct clusters. The results of our experiments demonstrate the effectiveness and the efficiency of DCBOR.

Keywords: Data Clustering, Clustering Algorithms, Handling Noise, Arbitrary Shape of Clusters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
289 Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves

Authors: Alicia Heraz, Claude Frasson

Abstract:

This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.

Keywords: Algorithms, brainwaves, emotional dimensions, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
288 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization

Authors: Marcell S. A. Martins, Benedito S. R. Neto, Gerson L. Serejo, Carlos G. R. Santos

Abstract:

Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm was implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.

Keywords: Multiscale recognition, indoor localization, tape-shaped marker, Fiducial Marker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
287 Semi-Automated Tracking of Vibrissal Movements in Free-Moving Rodents Captured by High-Speed Videos

Authors: Hyun June Kim, Tailong Shi, Seden Akdagli, Sam Most, Yuling Yan

Abstract:

Quantitative analyses of whisker movements provide a means to study functional recovery and regeneration of mouse facial nerve after an injury. However, accurate tracking of the mouse whisker movement is challenging. Most methods for whisker tracking require manual intervention, e.g. fixing the head of the mouse during a study. Here we describe a semi-automated image processing method, which is applied to high-speed video recordings of free-moving mice to track the whisker movements. We first track the head movement of a mouse by delineating the lower head contour frame-by-frame that allows for detection of the location and orientation of the head. Then, a region of interest is identified for each frame; the subsequent application of a mask and the Hough transform detects the selected whiskers on each side of the head. Our approach is used to examine the functional recovery of damaged facial nerves in mice over a course of 21 days.

Keywords: Mystacial macrovibrissae, whisker tracking, head tracking, facial nerve recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
286 Online Monitoring Rheological Property of Polymer Melt during Injection Molding

Authors: Chung-Chih Lin, Chien-Liang Wu

Abstract:

The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.

Keywords: Injection molding, melt viscosity, shear rate, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815
285 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing

Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar

Abstract:

The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.

Keywords: Cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
284 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications

Authors: B. G. Sheeparamatti, J. S. Kadadevarmath

Abstract:

Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics etc. This paper indicates the need of developing electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of microcantilever, equivalent electrical circuit is drawn and using force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to powerful set of intellectual tools that have been developed for understanding electrical circuits Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantlevers are in agreement with each other.

Keywords: Electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
283 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow

Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir

Abstract:

One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.

Keywords: Facial expression, Facial features, Optical flow, Motion vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
282 A New Source Code Auditing Algorithm for Detecting LFI and RFI in PHP Programs

Authors: Seyed Ali Mir Heydari, Mohsen Sayadiharikandeh

Abstract:

Static analysis of source code is used for auditing web applications to detect the vulnerabilities. In this paper, we propose a new algorithm to analyze the PHP source code for detecting LFI and RFI potential vulnerabilities. In our approach, we first define some patterns for finding some functions which have potential to be abused because of unhandled user inputs. More precisely, we use regular expression as a fast and simple method to define some patterns for detection of vulnerabilities. As inclusion functions could be also used in a safe way, there could occur many false positives (FP). The first cause of these FP-s could be that the function does not use a usersupplied variable as an argument. So, we extract a list of usersupplied variables to be used for detecting vulnerable lines of code. On the other side, as vulnerability could spread among the variables like by multi-level assignment, we also try to extract the hidden usersupplied variables. We use the resulted list to decrease the false positives of our method. Finally, as there exist some ways to prevent the vulnerability of inclusion functions, we define also some patterns to detect them and decrease our false positives.

Keywords: User-supplied Variables, hidden user-supplied variables, PHP vulnerabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
281 Bond Graph and Bayesian Networks for Reliable Diagnosis

Authors: Abdelaziz Zaidi, Belkacem Ould Bouamama, Moncef Tagina

Abstract:

Bond Graph as a unified multidisciplinary tool is widely used not only for dynamic modelling but also for Fault Detection and Isolation because of its structural and causal proprieties. A binary Fault Signature Matrix is systematically generated but to make the final binary decision is not always feasible because of the problems revealed by such method. The purpose of this paper is introducing a methodology for the improvement of the classical binary method of decision-making, so that the unknown and identical failure signatures can be treated to improve the robustness. This approach consists of associating the evaluated residuals and the components reliability data to build a Hybrid Bayesian Network. This network is used in two distinct inference procedures: one for the continuous part and the other for the discrete part. The continuous nodes of the network are the prior probabilities of the components failures, which are used by the inference procedure on the discrete part to compute the posterior probabilities of the failures. The developed methodology is applied to a real steam generator pilot process.

Keywords: Redundancy relations, decision-making, Bond Graph, reliability, Bayesian Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
280 A Piscan Ulcerative Aeromonas Infection

Authors: Ibrahim M. S. Shnawa, Bashar A. H. E. Alsadi, Kalida K. Alniaem

Abstract:

In the immunologic sense, clinical infection is a state of failure of the immune system to combat the pathogenic weapon of the bacteria invading the host. A motile gram negative vibroid organism associated with marked mono and poly nuclear cell responses was traced during the examination of a clinical material from an infected common carp Cyprinus carpio. On primary plate culture, growth was shown to be pure, dense population of an Aeromonas-like colony morphotype. The pure isolate was found to be; Aerobic, facultatively anaerobic, non-halophilic, grew at 0C, and 37C, oxidase positive utilizes glucose through fermentative pathway, resist 0/129 and novobiocin, produces alanine and lysine decarboxylases but non-producing ornithine dehydrolases. Tests for the in vitro determinants of pathogenicity has shown to be; Betahaemolytic onto blood agar, gelatinase, casienase and amylase producer. Three in vivo determinants of pathogenicity were tested as, the lethal dose fifty, the pathogenesis and pathogenicity. It was evident that 0.1 milliliter of the causal bacterial cell suspension of a density 1 x 107 CFU/ml injected intramuscularly into an average of 100gms fish toke five days incubation period, then at the day six morbidity and mortality were initiated. LD50 was recorded at the day 12 post-infection. Use of an LD50 doses to study the pathogenicity, reveals mononuclear and polynuclear cell responses, on examining the stained direct films of the clinical materials from the experimentally infected fish. Re-isolation tests confirm that the reisolant is same. The course of the infection in natural case was shown manifestation of; skin ulceration, haemorrhage and descaling. On evisceration, the internal organs were shown; congestion in the intestines, spleen and, air sacs. The induced infection showed a milder form of these manifestations. The grading of the virulence of this organism was virulent causing chronic course of infections as indicated from the pathogenesis and pathogenicity studies. Thus the infectious bacteria were consistent with Aeromonas hydrophila, and the infection was chronic.

Keywords: Piscan, inflammatory respnonse, pure culture, pathogen, chronic, infection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
279 General Purpose Graphic Processing Units Based Real Time Video Tracking System

Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai

Abstract:

Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.

Keywords: Connected components, Embrace threads, Local weighted kernel, Structuring element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
278 Thermoelastic Waves in Anisotropic Platesusing Normal Mode Expansion Method with Thermal Relaxation Time

Authors: K.L. Verma

Abstract:

Analysis for the generalized thermoelastic Lamb waves, which propagates in anisotropic thin plates in generalized thermoelasticity, is presented employing normal mode expansion method. The displacement and temperature fields are expressed by a summation of the symmetric and antisymmetric thermoelastic modes in the surface thermal stresses and thermal gradient free orthotropic plate, therefore the theory is particularly appropriate for waveform analyses of Lamb waves in thin anisotropic plates. The transient waveforms excited by the thermoelastic expansion are analyzed for an orthotropic thin plate. The obtained results show that the theory provides a quantitative analysis to characterize anisotropic thermoelastic stiffness properties of plates by wave detection. Finally numerical calculations have been presented for a NaF crystal, and the dispersion curves for the lowest modes of the symmetric and antisymmetric vibrations are represented graphically at different values of thermal relaxation time. However, the methods can be used for other materials as well

Keywords: Anisotropic, dispersion, frequency, normal, thermoelasticity, wave modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
277 Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

Authors: C. Sinescu, M. Negrutiu, R. Negru, M. Romînu, A.G. Podoleanu

Abstract:

The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

Keywords: Ceramic Fixed Partial Dentures, Material Defects, Polarization Sensitive Optical Coherence Tomography, Numerical Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
276 A Novel Prostate Segmentation Algorithm in TRUS Images

Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta

Abstract:

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Keywords: Prostate segmentation, stick filter, neural network, active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
275 Smart Cane Assisted Mobility for the Visually Impaired

Authors: Jayant Sakhardande, Pratik Pattanayak, Mita Bhowmick

Abstract:

An efficient reintegration of the disabled people in the family and society should be fulfilled; hence it is strongly needful to assist their diminished functions or to replace the totally lost functions. Assistive technology helps in neutralizing the impairment. Recent advancements in embedded systems have opened up a vast area of research and development for affordable and portable assistive devices for the visually impaired. Granted there are many assistive devices on the market that are able to detect obstacles, and numerous research and development currently in process to alleviate the cause, unfortunately the cost of devices, size of devices, intrusiveness and higher learning curve prevents the visually impaired from taking advantage of available devices. This project aims at the design and implementation of a detachable unit which is robust, low cost and user friendly, thus, trying to aggrandize the functionality of the existing white cane, to concede above-knee obstacle detection. The designed obstruction detector uses ultrasound sensors for detecting the obstructions before direct contact. It bestows haptic feedback to the user in accordance with the position of the obstacle.

Keywords: Visually impaired, Ultrasonic sensors, Obstruction detector, Mobility aid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6084
274 Secure Power Systems Against Malicious Cyber-Physical Data Attacks: Protection and Identification

Authors: Morteza Talebi, Jianan Wang, Zhihua Qu

Abstract:

The security of power systems against malicious cyberphysical data attacks becomes an important issue. The adversary always attempts to manipulate the information structure of the power system and inject malicious data to deviate state variables while evading the existing detection techniques based on residual test. The solutions proposed in the literature are capable of immunizing the power system against false data injection but they might be too costly and physically not practical in the expansive distribution network. To this end, we define an algebraic condition for trustworthy power system to evade malicious data injection. The proposed protection scheme secures the power system by deterministically reconfiguring the information structure and corresponding residual test. More importantly, it does not require any physical effort in either microgrid or network level. The identification scheme of finding meters being attacked is proposed as well. Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the proposed schemes.

Keywords: Algebraic Criterion, Malicious Cyber-Physical Data Injection, Protection and Identification, Trustworthy Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
273 A New Digital Transceiver Circuit for Asynchronous Communication

Authors: Aakash Subramanian, Vansh Pal Singh Makh, Abhijit Mitra

Abstract:

A new digital transceiver circuit for asynchronous frame detection is proposed where both the transmitter and receiver contain all digital components, thereby avoiding possible use of conventional devices like monostable multivibrators with unstable external components such as resistances and capacitances. The proposed receiver circuit, in particular, uses a combinational logic block yielding an output which changes its state as soon as the start bit of a new frame is detected. This, in turn, helps in generating an efficient receiver sampling clock. A data latching circuit is also used in the receiver to latch the recovered data bits in any new frame. The proposed receiver structure is also extended from 4- bit information to any general n data bits within a frame with a common expression for the output of the combinational logic block. Performance of the proposed hardware design is evaluated in terms of time delay, reliability and robustness in comparison with the standard schemes using monostable multivibrators. It is observed from hardware implementation that the proposed circuit achieves almost 33 percent speed up over any conventional circuit.

Keywords: Asynchronous Communication, Digital Detector, Combinational logic output, Sampling clock generator, Hardwareimplementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
272 Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography

Authors: Najari Moghadam Sh., Qomi M., Raofie F., Khadiv J.

Abstract:

In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively.

Keywords: Biological samples, Cyproheptadine, hollow fiber, liquid phase microextraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
271 A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, Bernd Michaelis

Abstract:

Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo color image sequences. These topologies are considered to different number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection with static velocity motion for continuous gesture. Therefore, the LRB topology in conjunction with Baum-Welch (BW) algorithm for training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.

Keywords: Computer Vision & Image Processing, Gesture Recognition, Pattern Recognition, Application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
270 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705