**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31108

##### DCBOR: A Density Clustering Based on Outlier Removal

**Authors:**
A. M. Fahim,
G. Saake,
A. M. Salem,
F. A. Torkey,
M. A. Ramadan

**Abstract:**

**Keywords:**
Data Clustering,
Clustering Algorithms,
Arbitrary Shape of clusters,
Handling
Noise

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1074549

**References:**

[1] M. Ankerst , M. M. Breunig and H-P. Kriegel , "OPTICS: Ordering Points to Identify the Clustering Structure". in Proc. ACM SIGMOD, 1999, pp. 49-60.

[2] M. Emre Celebi , Y. Alp Aslandogan , and P. R. Bergstresser "Mining biomedical images with density-based clustering." In ITCC -05: Proceedings of the International Conference on Information Technology: Coding and Computing, volume I, pages 163-168, Washington, DC, USA, 2005. IEEE Computer Society.

[3] M. Ester , H.-P. Kriegel , J. Sander and X. Xu , "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". in Proc. Knowledge Discovery and Data Mining, 1996, pp. 226- 231.

[4] L. Ertoz , M. Steinbach and V. Kumar , "A new shared nearest neighbor clustering algorithm and its applications", AHPCRC, Tech. Rep. 134, 2002.

[5] S. Guha, R. Rastogi , and K. Shim, "CURE: An Efficient Clustering Algorithms for Large Databases." Proc. ACM SIGMOD Int. Conf. on Management of Data. Seattle, WA, 1998, pp. 73-84.

[6] V. Hautamaeki , S. Cherednichenko , I. Kaerkkaeinen , T. Kinnunen , and P. Fraenti "Improving K-Means by Outlier Removal", LNCS Springer Berlin / Heidelberg, may 2005, pp. 978-987.

[7] A. Hinneburg and D. A. Keim , "An Efficient Approach to Clustering in Large Multimedia Databases with Noise," in Proc. Knowledge Discovery and Data Mining, 1998, pp. 58-65.

[8] A. K. Jain and, R. C.Dubes "Algorithms for Clustering Data." Prentice Hall, 1988.

[9] A. K. Jain , M. N. Murty , and P. J. Flynn , "Data Clustering: A Review", ACM Computing Surveys, vol. 31, no 3, pp. 264-323, Sep. 1999.

[10] G. Karypis , E. H. Han and V. Kumar, "CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling." Computer,32, pp. 68- 75, 1999.

[11] A. McCallum , K. Nigam and L. H. Ungar "Efficient Clustering of HighDimensional Data Sets with Application to Reference Matching." In Proceedings of KDD-2000. pp.169-178.

[12] R. T. Ng and J. Han "Efficient and Effective Clustering Methods for Spatial Data Mining". Proc. 20th Int. Conf. on Very Large Data Bases. Morgan Kaufmann Publishers, San Francisco, CA, 1994, p. 144-155.

[13] J. Sander , M. Ester , H-P. Kriegel , and X. Xu "Density-based clustering in spatial databases: The algorithm gdbscan and its applications." Data Mining and Knowledge Discovery, 2(2):169-194, 1998.

[14] R. Sibson, SLINK: an optimally efficient algorithm for the single-link cluster method. The Comp. Journal, 1973, 16(1), p. 30-34.

[15] T. Zhang , R. Ramakrishnan and M. Linvy BIRCH: An Efficient Data Clustering Method for Very Large Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data. ACM Press, New York, 1996, p. 103-114.