
 
Abstract—We present a decision-support tool to assist an operator 

in the detection and tracking of a suspect vehicle traveling to an 
unknown target destination. Multiple data sources, such as traffic 
cameras, traffic information, weather, etc., are integrated and 
processed in real-time to infer a suspect’s intended destination chosen 
from a list of pre-determined high-value targets. Previously, we 
presented our work in the detection and tracking of vehicles using 
traffic and airborne cameras. Here, we focus on the fusion and 
processing of that information to predict a suspect’s behavior. The 
network of cameras is represented by a directional graph, where the 
edges correspond to direct road connections between the nodes and the 
edge weights are proportional to the average time it takes to travel from 
one node to another. For our experiments, we construct our graph 
based on the greater Los Angeles subset of the Caltrans’s 
“Performance Measurement System” (PeMS) dataset. We propose a 
Bayesian approach where a posterior probability for each target is 
continuously updated based on detections of the suspect in the live 
video feeds. Additionally, we introduce the concept of ‘soft 
interventions’, inspired by the field of Causal Inference. Soft 
interventions are herein defined as interventions that do not 
immediately interfere with the suspect’s movements; rather, a soft 
intervention may induce the suspect into making a new decision, 
ultimately making their intent more transparent. For example, a soft 
intervention could be temporarily closing a road a few blocks from the 
suspect’s current location, which may require the suspect to change 
their current course. The objective of these interventions is to gain the 
maximum amount of information about the suspect’s intent in the 
shortest possible time. Our system currently operates in a human-on-
the-loop mode where at each step, a set of recommendations are 
presented to the operator to aid in decision-making. In principle, the 
system could operate autonomously, only prompting the operator for 
critical decisions, allowing the system to significantly scale up to 
larger areas and multiple suspects. Once the intended target is 
identified with sufficient confidence, the vehicle is reported to the 
authorities to take further action. Other recommendations include a 
selection of road closures, i.e., soft interventions, or to continue 
monitoring. We evaluate the performance of the proposed system 
using simulated scenarios where the suspect, starting at random 
locations, takes a noisy shortest path to their intended target. In all 
scenarios, the suspect’s intended target is unknown to our system. The 
decision thresholds are selected to maximize the chances of 
determining the suspect’s intended target in the minimum amount of 
time and with the smallest number of interventions. We conclude by 
discussing the limitations of our current approach to motivate a 
machine learning approach, based on reinforcement learning in order 
to relax some of the current limiting assumptions. 
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I. INTRODUCTION 

EAL-time collection, fusion, and processing of multiple 
data sources are essential ingredients for decision-support 

in the future surveillance and defense systems. The ever-
increasing quantities of multi-modal data collected by a large 
array of sensors and platforms is an opportunity to leverage the 
latest advances in Artificial Intelligence (AI) and Machine 
Learning (ML) in particular, to gain actionable intelligence in a 
timely manner and with minimal supervision. Recent revival of 
interest in AI/ML (and in particular deep learning) for defense 
applications is mostly the result of the exponential increase in 
the available compute as well as the improved infrastructure 
and technologies for sensing, storing, and accessing the 
available data sources that are essential for the success of such 
approaches. Arguably, some of the most remarkable advances 
have come in perception (e.g., detection and classification of 
objects in images) where deep neural networks trained with 
millions of labeled images can achieve super-human 
performance. Unfortunately, similar advances in reasoning and 
decision-making have yet to occur, as the current technologies 
cannot seem to address them effectively.  

In this work, we tackle the task of predicting the intended 
target of a pre-identified suspect vehicle as it travels across a 
network of roads where several sensors, i.e., traffic cameras, are 
used to monitor the environment. Fig. 1 is an illustration of our 
problem based on the Los Angeles road network. Inferring the 
‘true intention’ given a trajectory is generally an ill-posed 
problem if no further assumptions are made [1]. To make 
progress, we make several simplifying assumptions, some of 
which are to be removed in future work. First, we assume that 
there is a finite number of known high-value targets and that the 
suspect intends to travel to one of them. Second, we assume that 
our sensor network is sufficiently dense so that the suspect 
cannot evade detection as it travels towards the target. We will 
address this shortcoming in future work by allowing the 
operator to task a UAV to monitor any location not currently 
covered by our camera network.  

We build on prior work by our team [2] that took full 
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advantage of the power of deep neural networks to detect and 
track objects in Full-Motion Video (FMV). Here, we propose a 
principled Bayesian method [3] that takes as input a time series 
of multiple sightings of a suspect vehicle to estimate 
continuously the posterior probability for each target location. 

 

 

Fig. 1 Video streams are processed to identify and track a suspect 
vehicle in Los Angeles 

 
The proposed approach has several advantages: It allows for 

the integration of an arbitrary number of data streams as they 
become available in the future (e.g., traffic information, 
weather, etc.). Contrary to approaches based on deep learning, 
the models are more transparent, and the updates in beliefs 
could be traced back and verified. Moreover, the decision 
thresholds can be adjusted to obtain a balance between 
precision and recall as the situation warrants. Finally, our 
system supports both an operator-on-the-loop mode, whereby 
the operator is in full control, only taking course-of-action 
(COA) recommendations from the system, as well as an 
autonomous mode that only prompts the operator for decisions 
in critical situations. A robust autonomous operation is critical 
to success of such systems as their scale grows. An additional 
novel idea we experiment with here is the use of ‘Soft 
Interventions’ (SI). Here SI refers to a road or intersection 
blockage, ultimately decided upon by the operator, which 
forces the suspect to re-route, thereby sometimes revealing their 
true intentions more quickly. This idea is inspired by a sub-field 
of statistics, namely Causal Inference (CI) [4]. Historically, CI 
has focused on determining cause-and-effect relationships in 
the field of epidemiology (among others), and has recently 
gained popularity in other sub-fields of ML [5]. The central idea 
is the observation that by actively intervening in an 
environment, we can distinguish between causes and spurious 
correlations, an essential component of effective prediction and 
decision-making. Here, we focus on simple interventions, e.g., 
temporary blockage of roads or intersections. More 
sophisticated interventions will be explored in future work. 

To build intuition, we begin by presenting the details of our 
algorithm, demonstrating the main ideas and evaluating its 
performance on a smaller map generated using the road network 
of a neighborhood in Vancouver, British Columbia. We then 

scale the algorithm to a much larger graph based on a part of a 
publicly available PeMS dataset [6]. We present a high-level 
overview of our software architecture, enabling the real-time 
collection, aggregation, and processing of the streaming data. 
Finally, we will summarize the results and conclude with 
proposing a set of future directions. 

II. APPROACH AND ALGORITHMS 

We represent the street map as a directed bi-directional 
graph, as shown in Figs. 2 (A) and (C), with nodes 
corresponding to the hypothetical camera locations. The edges 
represent direct connections between nodes with their 
corresponding weights equal to the time it takes to travel 
between those nodes. Larger weight values correspond to 
longer travel times between those nodes. Two nodes are 
connected if and only if a vehicle can travel from one node to 
the other and the corresponding shortest route between those 
two nodes does not contain any other node in the set. Fig. 2 (A) 
is a toy example that covers a few blocks of Vancouver, British 
Columbia. We will use this example to describe our algorithm 
before proceeding to a much larger graph created using real 
traffic data. In Fig. 2 (A), the camera nodes are represented 
using blue circles, while red triangles represent the three 
potential target locations, Node 15, Node 16, and Node 17. The 
graph data structure representing our assumed connections 
between the nodes is shown in Fig. 2 (C). This example 
computes weight between nodes using the Manhattan distance 
[7]. 

To generate scenarios, we assume that the suspect will travel 
from an initial random node to a target node also selected 
randomly from a set of target nodes. A top-𝑘 (here with 𝑘 3), 
set of shortest routes between those two nodes is computed 
using Djikstra’s algorithm [8]. The suspect’s selected route is 
randomly sampled from this set using an inverse weighting 
scheme that results in the shortest route being more probable. 
This route is dependent on the graph structure as well as the 
weights that could be continuously updated depending on 
traffic conditions, weather, or any interventions. 

We use a Bayesian methodology to estimate 𝑃 𝑇 |𝑋 , the 
probability of target 𝑗 being the intended target, given the 
current node location 𝑖: 
 

 𝑃 𝑇 𝑋 ∝ 𝑃 𝑋 𝑇 ∙ 𝑃 𝑇        (1) 
 

The probability 𝑃 𝑇  is the prior, our belief about the 
intended target location prior to the current observation. It is 
assumed initially to be 1/𝑀, with 𝑀 being the number of 
targets. The term 𝑃 𝑋 𝑇  is the likelihood, a measure of the 
probability of traversing node 𝑋  given target 𝑇  was the 
intended target. Note that, the normalization factor is in general 
intractable as it is not possible to enumerate an indefinite 
number of behaviors or targets. Here, the assumption that one 
of the finite number of targets is the correct one leads to a 
simple normalization: ∑ 𝑃 𝑇 1, marginalizing 𝑃 𝑋  
over 𝑇 . We estimate the likelihoods as the average frequencies 
of each node being traversed given an initial point and a target 
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calculated through many randomly initialized simulations. In 
principle, the likelihoods could incorporate more sophisticated 
models that could be either hand-crafted or learned, e.g., via 
reinforcement learning [9]. The likelihoods are pre-computed 
for a given graph and could potentially be pre-computed for 
different combinations of traffic, time, weather, etc. During 
operations, at each time step, the posterior probability of each 
target is calculated by multiplying the likelihood for that node 
by the current prior probabilities for each potential target. Each 
step then leads to an updated probability accounting for the full 
trajectory traversed by the suspect. Fig. 2 (A) shows an example 
of a trajectory, represented by green circles and lines. The 
suspect vehicle was first identified at Node 0, with the intended 
target (only known to the suspect) being Node 15. The real-time 
posterior estimates are shown in Fig. 2 (B) using solid lines. To 
implement SI, the idea is to impose minimal constraints on the 
network in order to gain maximum amount of information 
regarding the suspect’s true intention. Fig. 2 (D) is a simplified 
schematic to give an intuitive understanding of the power of 
such interventions. If the suspect is currently at node 𝑋 , the 
green circle in the figure, it is unclear which of the two targets, 
red circles, is the final destination. Moreover, if the suspect 
takes the edge 𝑒 , no new information is revealed concerning 
the final destination. Removing this edge, i.e., blocking this 
street segment, forces the suspect to reveal its intentions by 
making a choice between the two remaining edges, 𝑒  and 𝑒 . 

More formally, at each step, if we are not sufficiently confident 
about the final destination, we consider an intervention (from a 
set of pre-selected road segments) that removes the edge with 
the maximum entropy [10]. This ensures that we have gained 
maximum information while updating the posteriors. The 
entropy, here measured in bits, for each outgoing edge is 
defined as, 𝑆 ∑ 𝑃 log 𝑃  , where 𝑃 ’s correspond to the 
posterior probabilities of target 𝑖. The decision on whether or 
not to intervene is made by balancing the cost of taking an 
intervention, i.e., the inconvenience caused to others, with the 
benefit of gaining maximum information about the suspect. 
This preference is set by varying a threshold which will be 
discussed later. A concrete example, demonstrating the benefits 
of interventions is shown in Figs. 2 (A) and (B). Two 
trajectories starting from Node 0 travelling to Node 15 are 
shown in green and purple. The green trajectory represents a 
scenario without interventions. The corresponding target 
posteriors are plotted in Fig. 2 (B) with solid lines. At time 𝑡 , 
we observe that target Node 16 is incorrectly determined to be 
the most likely target. The purple trajectory corresponds to the 
same scenario, except the operator intervened to close the road 
segment connecting Node 4 and Node 7. This forced the suspect 
to re-route by travelling to Node 9 on their way to the intended 
target at Node 15. The new post-intervention posteriors are 
shown as dotted lines in Fig. 2 (B). We see that the adjusted 
posteriors correctly identify Node 15 as the most likely target. 

 

 

Fig. 2 A simple example to demonstrate our approach, (A) A neighborhood in Vancouver, British Columbia, represented using 18 nodes and 89 
directed edges. The blue circles correspond to camera locations, while the three red triangles are arbitrarily chosen target locations. Two paths 
are shown: The green path corresponds to a scenario without interventions, while the purple path is the result of blocking the road from Node 4 

to Node 7, (B) Time-dependent target probabilities for the case without intervention, solid lines, and with interventions, dotted lines. The 
purple horizontal line corresponds to the threshold used for decision-making. (C) Graph data structure corresponding to the map. (D) A simple 
diagram to demonstrate the utility of interventions. Intervening on 𝑒 results in the largest gain in information concerning the suspect’s intention 
 

We will next discuss the dataset used to create a much larger 
graph based on Los Angeles, followed by the tuning and 

evaluation of both graphs in subsequent sections. 
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III. DATASETS 

The Caltrans PeMS [6] is a publicly available traffic dataset 
provided by the California Department of Transportation. The 
PeMS dataset is collected from nearly 40,000 individual sensors 
spread across all major metropolitan areas of California. These 

loop sensors measure vehicle count and are sampled every 30 
seconds. Caltrans subsequently processes the data to return 
average velocity and flow rate for each sensor [11]. Due to the 
large data volume, liberal usage policy, and quality of data, the 
PeMS dataset is frequently used in the literature as a training 
source for traffic prediction [12]-[14]. 

 

 

Fig. 3 (A) Visualization of the PeMS data for District 7 provided by Caltrans [6], (B) OpenStreetMaps node and edges, in red, encompassing 
the greater Los Angeles region, (C) Greater Los Angeles region overlaid with a subsample of the PeMS nodes 

 
The specific area of interest selected was the PeMS District 

7 region that encompasses the greater Los Angeles area, 
outlined in Fig. 3 (A). District 7 data are collected from 2055 
sensors and are updated at 5-minute intervals. One key element 
that is not provided in the dataset is an underlying structure to 

the road network. Yu et al. [12] construct a weighted adjacency 
matrix by computing the distance between all pairs of nodes 
with a threshold value to disconnect nodes sufficiently far apart. 
This strategy constructs a graph where edges do not necessarily 
correspond to any realistic route between nodes. For example, 
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a node on a northbound lane of a highway may be physically 
close to a node on the adjoining southbound lane resulting in a 
low edge weight. However, the travel distance of a vehicle on 
the road network may be significantly larger. To better inform 
the graph construction, OpenStreetMap (OSM) [15] provides a 
comprehensive mapping dataset including road connections. 
The raw XML files, provided by OSM, were converted into a 
graph network using SUMO’s netconvert utility. SUMO is a 
traffic simulator provided by the Eclipse foundation [16]. The 
graph that encompassed all of the nodes in the PeMS District 7 
dataset contained approximately 400k nodes and 1M edges, 
Fig. 3 (B). This is a directed graph meaning physical traffic 
direction along edges was maintained. This graph was far too 
large for rapid, iterative, development; hence, maintaining a 
graph constructed by overlaying the PeMS District 7 nodes on 
top of the OSM graph was impractical. Rather, this large 
combined graph was created a single time and Dijkstra’s 
shortest path algorithm [8] was repeatedly called to compute the 
path between each of the PeMSD7 nodes using the nearest 
edges of the OSM graph. This reduced size network was 
comprised of PeMSD7 nodes and edges weighted by the 
physical travel time required to traverse from one node to 
another. This road network-informed graph, Fig. 3 (C), was 
further downsampled to 231 nodes using a similar strategy to 
further decrease the iteration time required during development. 

Five targets were selected from the 231 nodes. Four of these 
targets were selected along the periphery of the graph with one 
target near the graph’s centroid. Given the large number of 
edges, greater than 2500, the SI strategy described above was 
altered such that a node was removed from the graph rather than 
a single edge (i.e., blocking traffic flow in an intersection). Four 
nodes with a high degree (relative to other nodes) were selected 
as the intervention set. Nodes with high degree will likely 
impact more routes which should yield more information when 
the agent is forced to re-route. 

IV. METRICS AND RESULTS 

The proposed system is designed to evaluate the probabilities 
for each target and recommend a COA to the operator. The 
possible COAs are to keep monitoring, report the suspect to the 
authorities, or to make a soft intervention. Note that in our 
experimental scenario, reporting a wrong target location is 
considered a failure equal to not intercepting the suspect before 
it reaches its destination.  

To make concrete recommendations, two thresholds are 
required. First, a posterior probability threshold that quantifies 
the minimum probability estimate for a target before it is 
reported to the authorities. Second, an entropy threshold is used 
to decide whether or not we should intervene. Recall, that we 
associate a cost with making interventions and therefore, we 
attempt to avoid making them unless the benefit, i.e., the 
increased confidence in the target, outweighs the cost. At 
runtime, these thresholds could be tuned to reflect the 
preferences of the system operators. 

To help determine the ‘optimum’ threshold values as well as 
evaluate the performance of our system, we use several 

common metrics as well a custom score function to quantify our 
preferences: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  (2) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙  (3) 

 

 𝐹1 2. .
 (4) 

 
where 𝑇𝑃: True Positives – Target determined correctly; 𝐹𝑃: 
False Positives – Target incorrectly determined; 𝑇𝑁: True 
Negatives – There are no true negatives given our assumptions; 
𝐹𝑁: False Negatives – No recommendation was made and the 
target reached its destination. 

All proposed metrics are bounded between 0 and 1, with 1 
corresponding to perfect performance. Intuitively, precision is 
diminished as the number of false positives increases, i.e., 
system is more ‘sensitive’, while recall is degraded if there are 
more false negatives, i.e., system is less ‘sensitive’. The F1-
score is the harmonic mean of precision and recall and is often 
used as a good metric to summarize the overall performance of 
the system. We also define a custom scoring function to 
incorporate the cost of intervention and reward the quicker 
correct determination of the target: 

 

𝑆𝑐𝑜𝑟𝑒 . ∑ 𝐴. 𝐺 𝐵. 𝐼 𝐶. 𝐺 1  (5) 

 
where A, B, and C are constants that capture the operator’s 
preferences defined in Table I, 𝐺 ∈ 1, 1  (incorrect/correct 
determination), 𝐼 ∈ 0, 1  (intervened or not), 𝑁 is the number 
of nodes suspect has to traverse to reach the target (given the 
initial starting point), and 𝐿 is the number of nodes traversed 
before the target determination was made. This function 
encodes our preference for fewer interventions by associating a 
cost, scaled by 𝐵. The last term is used to reward the system for 
faster correct recommendations. Finally, the function is 
normalized by total number of simulated scenarios 𝑛. To 
estimate the optimum thresholds, we performed an exhaustive 
grid search over the 2-dimensional parameter space and 
selected the thresholds yielding optimum performance, Table I. 
These parameters are then fixed. Note that the custom scores of 
the two graphs are not comparable as they depend on specific 
graph properties, e.g., number of nodes. 

 
TABLE I 

OPTIMUM THRESHOLDS AND CONSTANT PARAMETERS USED IN EVALUATION 

OF SCENARIOS IN THE VANCOUVER AND LOS ANGELES GRAPHS 

Parameter Vancouver Los Angeles 

Posterior Threshold 0.575 0.484 

Entropy Threshold 1.263 0.227 

A 10 10 

B 3 3 

C 2 2 

 

Fixing the thresholds at their optimum values, 𝑛 3,000 
scenarios were simulated to obtain the following results: 
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TABLE II 
METRICS CALCULATED FOR VANCOUVER AND LOS ANGELES GRAPHS 

 Vancouver  Los Angeles  

Metrics Interventions 
No 

Interventions
Interventions 

No 
Interventions

Precision 0.706 0.700 0.760 0.727 

Recall 0.760 0.756 0.794 0.774 

F1 0.732 0.727 0.777 0.750 

Score 2.71 2.56 5.50 3.59 

For both graphs, we see a slight improvement in F1 score if interventions 
are allowed. This comes at the cost of lower overall score arising from the 
additional penalty from making interventions. 

 

Note that in the case of Vancouver, due to the very small size 
of the graph the interventions have a small effect. As expected, 
we get a larger performance boost in the larger graph where the 
targets are sufficiently far from the initial starting points to 
allow more time for decision-making. Also note that the larger 

Score value of the intervened simulations supports the fact that 
the performance gain due to these interventions did in fact 
outweigh the costs, as specified by the constants in Table I. 

A similar scheme was employed on the larger graph 
constructed from PeMS District 7 data, Figs. 4 (A) and (B). This 
larger graph is composed of an order of magnitude more nodes 
than the toy example; however, the degree of separation 
between any two nodes does not scale with the absolute number 
of nodes. This is highlighted in Fig. 4 (A) example where a 
suspect can traverse half of the graph’s geographic expanse, 
initially starting near Santa Monica, 𝑡 , travelling to the target 
in Pomona, 𝑡 , in only seven steps. Even with this limited 
number of suspect acquisitions, the correct target can be 
determined from the Bayesian approach in four to five time 
steps, Fig. 4 (C). The performance of the Bayesian trajectory 
approach far exceeds a naïve approach of only using the 
distance between the suspect to each target. 

 

 

Fig. 4 (A) A Sample trajectory in the LA graph. Five target locations are arbitrarily selected (and marked on the map by triangles). The 
trajectory is shown in green, (B) Graph data structure for LA map, (C) Time-dependent target probabilities. The target (shown in red) was 

correctly identified (without any interventions) 
 

 

Fig. 5 A high-level schematic of our system architecture to support live streaming, video processing, and decision support 
 

V. SYSTEM ARCHITECTURE 

To demonstrate and explore various operational scenarios, 

we implemented an application that supports both video stream 
analytics and real-time decision support. We build on the real-
time video streaming system we developed in [2] that is capable 
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of receiving and processing real-time video data streams from 
traffic or airborne cameras. Detector and Tracker algorithms 
are then used to further process the data before serving the 
results across the system through HTTP Live Streaming (HLS) 
protocol and Kafka message bus. 

The decision-support sub-system is responsible for serving 
the Predictor and Recommender algorithms as services. The 
prediction algorithm is wrapped in the predictor service and 
takes as input the real-time video for each node, weather 
conditions, traffic report as well as the operator intervention 
decisions. The estimated target probabilities as well as a set of 

recommendations (served by the recommender service) are 
provided to the operator to make the final decision. We also 
utilize an integrated storage capability for more efficient 
aggregation, processing, and access to historical data.  

The architecture is designed to be modular, wrapping 
individual algorithms and features, into a stand-alone service. 
This results in a decoupled, scalable and maintainable 
application to support future developments. All services are 
containerized to enable consistent and reliable services 
allowing modular deployment as needed. A high-level 
schematic of our software architecture is shown in Fig. 5. 

 

 

Fig. 6 Mock User Interface displaying the geo-map, multiple live camera feeds, target probabilities, recommendations, as well as access to live 
weather/traffic information and historical footage 

 
On the landing page, the web interface Fig. 6, shows the 

nearest six cameras’ live streaming videos to the suspect’s 
estimated location. Operators can select specific cameras for 
manual monitoring. The detector/tracker services run in the 
background and suspect’s location is fed into the Predictor and 
Recommender services for further processing. Right below the 
geo-map view of the interface, the list of predicted targets and 
their associated probabilities are displayed. Operators see the 
recommended intervention options proposed by the algorithms. 
When an operator chooses an intervention from the list, the web 
interface re-renders and displays updated prediction results and 
recommendation options, along with corresponding visual 
effect on the map view, for example, placing a marker to 
indicate a road closure of the road leading to target T3 in Fig. 
6. The real-time weather and traffic conditions are also 
displayed. The system allows the operators to access (and 

potentially download) any video footage by specifying the time 
range and the camera.  

The system is designed with incremental implementation in 
mind. As the algorithms are matured (and new ones are added), 
our design allows for fast and easy integration and serving of 
these algorithms. 

VI. CONCLUSION 

In this work, we have taken initial steps in integrating deep 
learning-based perception models capable of detecting and 
tracking vehicles in FMV with a robust and flexible Bayesian 
framework. Our preliminary results show promise in delivering 
automated recommendations to operators for traffic 
surveillance applications, paving the way for semi-
autonomous/autonomous modes of operation in the future. 
Increasingly, we live in a hyper-connected world, and the 
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attention of the limited numbers of human operators is scarce 
and extremely valuable. Systems such as ours will enable more 
efficient processing and analysis of large and diverse data 
streams, only prompting the operator for critical decisions. 

While we focused on the traffic scenario because of 
convenience due to availability of public data, our approach is 
general and could be adapted to other decision-support tools in 
different domains. 

We are currently working on multiple extensions of this 
work. Reinforcement Learning (e.g., Q-learning) [9] could be 
used to model the scenario as a Markov Decision Process 
(MDP), with states corresponding to the current location of the 
suspect, and the actions are the set of recommendations 
available. This is one way to directly estimate the likelihood 
function presented here. Moreover, we are actively working to 
go beyond some of the simplifying assumptions made in this 
work, allowing for more sophisticated behavior by the suspect 
as well as leveraging additional information sources for 
decision-making, e.g., type of vehicle, speed, etc. Ultimately, 
we work towards setting up an adversarial training loop, relying 
on self-play [17], training both the Suspect and the 
Recommender, further improving the performance of our 
decision-support tool. It is then possible to close the loop by 
optimizing the number and the placement of the sensors to 
ensure maximum performance while balancing the costs.  
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