Search results for: distribution process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6988

Search results for: distribution process

5578 The Effects of RCA Clean Variables on Particle Removal Efficiency

Authors: Siti Kudnie Sahari, Jane Chai Hai Sing, Khairuddin Ab. Hamid

Abstract:

Shrunken patterning for integrated device manufacturing requires surface cleanliness and surface smoothness in wet chemical processing [1]. It is necessary to control all process parameters perfectly especially for the common cleaning technique RCA clean (SC-1 and SC-2) [2]. In this paper the characteristic and effect of surface preparation parameters are discussed. The properties of RCA wet chemical processing in silicon technology is based on processing time, temperature, concentration and megasonic power of SC-1 and QDR. An improvement of wafer surface preparation by the enhanced variables of the wet cleaning chemical process is proposed.

Keywords: RCA, SC-1, SC-2, QDR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3220
5577 Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations

Authors: Marco Actis Grande, Somlak Wannarumon

Abstract:

This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction.

Keywords: Computer fluid dynamic, Investment casting, Jewelry, Mould filling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
5576 A Detailed Experimental Study of the Springback Anisotropy of Three Metals using the Stretching-Bending Process

Authors: A. Soualem

Abstract:

Springback is a significant problem in the sheet metal forming process. When the tools are released after the stage of forming, the product springs out, because of the action of the internal stresses. In many cases the deviation of form is too large and the compensation of the springback is necessary. The precise prediction of the springback of product is increasingly significant for the design of the tools and for compensation because of the higher ratio of the yield stress to the elastic modulus. The main object in this paper was to study the effect of the anisotropy on the springback for three directions of rolling: 0°, 45° and 90°. At the same time, we highlighted the influence of three different metallic materials: Aluminum, Steel and Galvanized steel. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to the direction of rolling. We also showed the role of lubrication in the reduction of the springback. Moreover, in this work, we have studied important characteristics in deep drawing process which is a springback. We have presented defaults that are showed in this process and many parameters influenced a springback. Finally, our results works lead us to understand the influence of grains orientation with different metallic materials on the springback and drawing some conclusions how to concept deep drawing tools. In addition, the conducted work represents a fundamental contribution in the discussion the industry application.

Keywords: Deep-Drawing, Grains orientation, Laminate Tool, Springback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
5575 Using Technology with a New Model of Management Development by Simulation of Neural Network and its Application on Intelligent Schools

Authors: Ahmad Ghayoumi, Mehdi Ghayoumi

Abstract:

Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand management improvement is best described as the process from which managers learn and improve their skills not only to benefit themselves but also their employing organizations Here, we present a model Management improvement System that has been applied on some schools and have made strict improvement.

Keywords: Intelligent school, Management development system, Learning station, Teaching station

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081
5574 The Impact of Social Stratification to the Phenomenon of “Terrorism“

Authors: Rustamov Nasim, Roostamov Yunusbek

Abstract:

In this work social stratification is considered as one of significant factor which generate the phenomena “terrorism” and it puts the accent on correlation connection between them, with the object of creation info-logical model generation of phenomena of “terrorism” based on stratification process.

Keywords: Social stratification, stratification process, generation of phenomena “terrorism”, conceptions – “terror”, “terrorize” and “terrorism”, info-logical model of phenomena of “terrorism”.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4221
5573 Material Selection for a Manual Winch Rope Drum

Authors: Moses F. Oduori, Enoch K. Musyoka, Thomas O. Mbuya

Abstract:

The selection of materials is an essential task in mechanical design processes. This paper sets out to demonstrate the application of analytical decision making during mechanical design and, particularly, in selecting a suitable material for a given application. Equations for the mechanical design of a manual winch rope drum are used to derive quantitative material performance indicators, which are then used in a multiple attribute decision making (MADM) model to rank the candidate materials. Thus, the processing of mechanical design considerations and material properties data into information that is suitable for use in a quantitative materials selection process is demonstrated for the case of a rope drum design. Moreover, Microsoft Excel®, a commonly available computer package, is used in the selection process. The results of the materials selection process are in agreement with current industry practice in rope drum design. The procedure that is demonstrated here should be adaptable to other design situations in which a need arises for the selection of engineering materials, and other engineering entities.

Keywords: Design Decisions, Materials Selection, Mechanical Design, Rope Drum Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3763
5572 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region

Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan

Abstract:

Rainfall runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15 – May 18 2014). Prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.

Keywords: Flood, HEC-HMS, Prediction, Rainfall – Runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
5571 Laser Forming of Titanium and Its Alloys – An Overview

Authors: Esther T. Akinlabi, Mukul Shukla, Stephen A. Akinlabi

Abstract:

Laser beam forming is a novel technique developed for the joining of metallic components. In this study, an overview of the laser beam forming process, areas of application, the basic mechanisms of the laser beam forming process, some recent research studies and the need to focus more research effort on improving the laser-material interaction of laser beam forming of titanium and its alloys are presented.

Keywords: Aerospace, Deformation, Laser forming, Mechanisms, Titanium, Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3161
5570 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

Authors: Mohammad Talha, B. N. Singh

Abstract:

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
5569 Achieving Success in NPD Projects

Authors: Ankush Agrawal, Nadia Bhuiyan

Abstract:

The new product development (NPD) literature emphasizes the importance of introducing new products on the market for continuing business success. New products are responsible for employment, economic growth, technological progress, and high standards of living. Therefore, the study of NPD and the processes through which they emerge is important. The goal of our research is to propose a framework of critical success factors, metrics, and tools and techniques for implementing metrics for each stage of the new product development (NPD) process. An extensive literature review was undertaken to investigate decades of studies on NPD success and how it can be achieved. These studies were scanned for common factors for firms that enjoyed success of new products on the market. The paper summarizes NPD success factors, suggests metrics that should be used to measure these factors, and proposes tools and techniques to make use of these metrics. This was done for each stage of the NPD process, and brought together in a framework that the authors propose should be followed for complex NPD projects. While many studies have been conducted on critical success factors for NPD, these studies tend to be fragmented and focus on one or a few phases of the NPD process. 

Keywords: New product development, performance, critical success factors, framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
5568 The Role of Emotions in the Consumer: Theoretical Review and Analysis of Components

Authors: Mikel Alonso López

Abstract:

The early eighties saw the rise of a new research trend in several prestigious journals, mainly articles that related emotions with the decision-making processes of the consumer, and stopped treating them as external elements. That is why we ask questions such as: what are emotions? Are there different types of emotions? What components do they have? Which theories exist about them? In this study, we will review the main theories and components of emotion analysing the cognitive factor and the different emotional states that are generally recognizable with a focus in the classic debate as to whether they occur before the cognitive process or the affective process.

Keywords: Emotion, consumer behaviour, feelings, decision making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
5567 Enhanced Mycophenolic Acid Production by Penicillium brevicompactum with Enzymatically Hydrolyzed Casein

Authors: F. Ardestani, S. S. A. Fatemi, B. Yakhchali

Abstract:

Mycophenolic acid (MPA) is a secondary metabolite produced by Penicillium brevicompactum, which has antibiotic and immunosuppressive properties. In this study, the first, mycophenolic acid was produced in a fermentation process by Penicillium brevicompactum MUCL 19011 in shake flask using a base medium. The maximum MPA production, product yield and productivity of process were 1.379 g/L, 18.6 mg/g glucose and 4.9 mg/L. h, respectively. Also the glucose consumption, biomass and MPA production profiles were investigated during batch cultivation. Obtained results showed that MPA production starts approximately after 180 hours and reaches to a maximum at 280 h. In the next step, the effects of some various concentrations of enzymatically hydrolyzed casein on MPA production were evaluated. Maximum MPA production, product yield and productivity as 3.63 g/L, 49 mg/g glucose and 12.96 mg/L.h, respectively were obtained with using 30 g/L enzymatically hydrolyzed casein in culture medium. These values show an enhanced MPA production, product yield and process productivity pr as 116.8%, 132.8% and 163.2%, respectively.

Keywords: Penicillium brevicompactum, Enzymatically hydrolyzed casein, Mycophenolic acid, Submerged culture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
5566 Influence of Hydraulic Retention Time on Biogas Production from Frozen Seafood Wastewater using Decanter Cake as Anaerobic Co-digestion Material

Authors: Thaniya Kaosol, Narumol Sohgrathok

Abstract:

In this research, an anaerobic co-digestion using decanter cake from palm oil mill industry to improve the biogas production from frozen seafood wastewater is studied using Continuously Stirred Tank Reactor (CSTR) process. The experiments were conducted in laboratory-scale. The suitable Hydraulic Retention Time (HRT) was observed in CSTR experiments with 24 hours of mixing time using the mechanical mixer. The HRT of CSTR process impacts on the efficiency of biogas production. The best performance for biogas production using CSTR process was the anaerobic codigestion for 20 days of HRT with the maximum methane production rate of 1.86 l/d and the average maximum methane production of 64.6%. The result can be concluded that the decanter cake can improve biogas productivity of frozen seafood wastewater.

Keywords: anaerobic co-digestion, frozen seafood wastewater, decanter cake, biogas, hydraulic retention time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4649
5565 A Review on Process Parameters of Ti/Al Dissimilar Joint Using Laser Beam Welding

Authors: K. Kalaiselvan, K. Sekar, S. Elavarasi

Abstract:

The use of laser beam welding for joining titanium and aluminum offers more advantages compared with conventional joining processes. Dissimilar metal combination is very much needed for aircraft structural industries and research activities. The quality of a weld joint is directly influenced by the welding input parameters. The common problem that is faced by the manufactures is the control of the process parameters to obtain a good weld joint with minimal detrimental. To overcome this issue, various parameters can be preferred to obtain quality of weld joint. In this present study an overall literature review on processing parameters such as offset distance, welding speed, laser power, shielding gas and filler metals are discussed with the effects on quality weldment. Additionally, mechanical properties of welds joint are discussed. The aim of the report is to review the recent progress in the welding of dissimilar titanium (Ti) and aluminum (Al) alloys to provide a basis for follow up research.

Keywords: Laser beam welding, titanium, aluminum, process parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
5564 Hydrodynamic Characteristics of Dry Beneficiation of Iron Ore and Coal in a Fast Fluidized Bed

Authors: M. Das, R. K. Saha, B. C. Meikap

Abstract:

Iron ore and coal are the two major important raw materials being used in Iron making industries. Usually ore fines containing around 5% Alumina are rejected due to higher proportion of alumina. Therefore, a technology or process which may reduce the alumina content by 2% by beneficiation process will be highly attractive . In addition fine coals with ash content is used nearly 12% is directly injected in blast furnace. Fast fluidization is a technology by using dry beneficiation of coal and iron ore can be done. During the fluidization process the iron ore band coal is fluidized at high velocity in the riser of a fast fluidized bed, the heavier and coarse particles is generally settled at the bottom in a dense zone of the riser while the finer and lighter particle are entrained to the top dilute zone and then via a cyclone is fed back to the bottom of the riser column. Most of the alumina and low ash fine size coals being lighter are expected to move up to the riser and by a natural beneficiation of ores is expected to take place in the riser. Therefore in this study an attempt has been made for dry beneficiation of iron ore and coal in a fluidized bed and its hydrodynamic characterization.

Keywords: beneficiation, fluidization, gas-solid fluidization, riser .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
5563 Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON

Authors: Mohd K. Yunus, Murni M. Ahmad, Abrar Inayat, Suzana Yusup

Abstract:

Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.

Keywords: Biomass, Gasification, Hydrogen, iCON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
5562 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: Aluminum, alumina, nanoparticle reinforced composites, porosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
5561 Mechanical Structure Design Optimization by Blind Number Theory: Time-dependent Reliability

Authors: Zakari Yaou, Lirong Cui

Abstract:

In a product development process, understanding the functional behavior of the system, the role of components in achieving functions and failure modes if components/subsystem fails its required function will help develop appropriate design validation and verification program for reliability assessment. The integration of these three issues will help design and reliability engineers in identifying weak spots in design and planning future actions and testing program. This case study demonstrate the advantage of unascertained theory described in the subjective cognition uncertainty, and then applies blind number (BN) theory in describing the uncertainty of the mechanical system failure process and the same time used the same theory in bringing out another mechanical reliability system model. The practical calculations shows the BN Model embodied the characters of simply, small account of calculation but betterforecasting capability, which had the value of macroscopic discussion to some extent.

Keywords: Mechanical structure Design, time-dependent stochastic process, unascertained information, blind number theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
5560 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: Apparent temperature, health, safety work, scaffoldings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
5559 Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector

Authors: H. Erbiyik, A. Bal, M. Sirakaya, Ö. Yesildal, E. Yolcu

Abstract:

The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.

Keywords: Aluminum sector, analytic hierarchy process, decision making, green logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
5558 Co-composting Cow Manure with Food Waste: The Influence of Lipids Content

Authors: Neves, L., Ferreira, V., Oliveira, R.

Abstract:

Addition of an oily waste to a co-composting process of dairy cow manure with food waste, and the influence in the final product was evaluated. Three static composting piles with different substrates concentrations were assessed. Sawdust was also added to all composting piles to attain 60%, humidity at the beginning of the process. In pile 1, the co-substrates were the solid-phase of dairy cow manure, food waste and sawdust as bulking agent. In piles 2 and 3 there was an extra input of oily waste of 7 and 11% of the total volume, respectively, corresponding to 18 and 28% in dry weight. The results showed that the co-composting process was feasible even at the highest fat content. Another positive effect due to the oily waste addition was the requirement of extra humidity, due to the hydrophobic properties of this specific waste, which may imply reduced need of a bulking agent. Moreover, this study shows that composting can be a feasible way of adding value to fatty wastes. The three final composts presented very similar and suitable properties for land application.

Keywords: Cow manure, composting, food waste, lipids content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
5557 Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation

Authors: Dibyendu Ghoshal, Pinaki Pratim Acharjya

Abstract:

Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.

Keywords: Image segmentation, linear transform, bilinear transform, conformal transform, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
5556 The Change in Management Accounting from an Institutional and Contingency Perspective: A Case Study for a Romanian Company

Authors: Gabriel Jinga, Madalina Dumitru

Abstract:

The objective of this paper is to present the process of change in management accounting in Romania, a former communist country from Eastern Europe. In order to explain this process, we used the contingency and institutional theories. We focused on the following directions: the presentation of the scientific context and motivation of this research and the case study. We presented the state of the art in the process of change in the management accounting from the international and national perspective. We also described the evolution of management accounting in Romania in the context of economic and political changes. An important moment was the fall of communism in 1989. This represents a starting point for a new economic environment and for new management accounting. Accordingly, we developed a case study which presented this evolution. The conclusion of our research was that the changes in the management accounting system of the company analysed occurred in the same time with the institutionalisation of some elements (e.g. degree of competition, training and competencies in management accounting). The management accounting system was modelled by the contingencies specific to this company (e.g. environment, industry, strategy).

Keywords: Management accounting, change, Romania, contingency and institutional theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
5555 Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay

Authors: Lydia Chan, Islam Shyha, Dale Dreyer, John Hamilton, Phil Hackney

Abstract:

Nickel-based superalloys are generally known to be difficult to cut due to their strength, low thermal conductivity, and high work hardening tendency. Superalloy such as alloy 625 is often used in the oil and gas industry as a surfacing material to provide wear and corrosion resistance to components. The material is typically applied onto a metallic substrate through weld overlay cladding, an arc welding technique. Cladded surfaces are always rugged and carry a tough skin; this creates further difficulties to the machining process. The present work utilised design of experiment to optimise the internal cylindrical rough turning for weld overlay surfaces. An L27 orthogonal array was used to assess effects of the four selected key process variables: cutting insert, depth of cut, feed rate, and cutting speed. The optimal cutting conditions were determined based on productivity and the level of tool wear.

Keywords: Cylindrical turning, nickel superalloy, turning of overlay, weld overlay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
5554 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: Si-steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
5553 Long Wavelength Coherent Pulse of Sound Propagating in Granular Media

Authors: Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding

Abstract:

A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results.

Keywords: Discrete elements, Hertzian Contact, polydispersity, weakly nonlinear, wave propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
5552 Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods

Authors: M. Rüstü Karaman, Tekin Susam, Fatih Er, Servet Yaprak, Osman Karkacıer

Abstract:

Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.

Keywords: Geostatistic, kriging, organic matter, sugarbeet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
5551 Alternative Approach toward Waste Treatment: Biodrying for Solid Waste in Malaysia

Authors: Nurul' Ain Ab Jalil, Hassan Basri

Abstract:

This paper reviews the objectives, methods and results of previous studies on biodrying of solid waste in several countries. Biodrying of solid waste is a novel technology in developing countries such as in Malaysia where high moisture content in organic waste makes the segregation process for recycling purposes complicated and diminishes the calorific value for the use of fuel source. In addition, the high moisture content also encourages the breeding of vectors and disease-bearing animals. From the laboratory results, the average moisture content of organic waste, paper, plastics and metals are 58.17%, 37.93%, 29.79% and 1.03% respectively for UKM campus. Biodrying of solid waste is a simple method of waste treatment as well as a cost-efficient technology to dry the solid waste. The process depends on temperature monitoring and air flow control along with the natural biodegradable process of organic waste. This review shows that the biodrying of solid waste method has high potential in treatment and recycling of solid waste, be useful for biodrying study and implementation in Malaysia.

Keywords: Biodrying of solid waste, Organic waste, Fuel source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
5550 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis

Abstract:

This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Keywords: Aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
5549 Numerical Simulation for Self-Loosening Phenomenon Analysis of Bolt Joint under Vibration

Authors: Long Kim Vu, Ban Dang Nguyen

Abstract:

In this paper, the finite element method (FEM) is utilized to simulate the comprehensive process including tightening, releasing and self-loosening of a bolt joint under transverse vibration. Following to the accurate geometry of helical threads, an absolutely hexahedral meshing is implemented. The accuracy of simulation process is verified and validated by comparison with the experimental results on clamping force-vibration relationship, which shows the sufficient correlation. Further analysis with different amplitude and frequency of transverse vibration is done to determine the dominant factor inducing the failure.

Keywords: Bolt self-loosening, contact state, FEM, transverse vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306