Search results for: Abrasive flow rate
3207 Investigation of Droplet Size Produced in Two-Phase Gravity Separators
Authors: Kul Pun, F. A. Hamad, T. Ahmed, J. O. Ugwu, J. Eyers, G. Lawson, P. A. Russell
Abstract:
Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size.
Keywords: Two-phase separator, average bubble droplet, bubble size distribution, liquid-liquid phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3253206 The Ethics of Instream Flows: Science and Policy in Southern Alberta, Canada
Authors: Jeremy J. Schmidt
Abstract:
Securing instream flows for aquatic ecosystems is critical for sustainable water management and the promotion of human and environmental health. Using a case study from the semiarid region of southern Alberta (Canada) this paper considers how the determination of instream flow standards requires judgments with respect to: (1) The relationship between instream flow indicators and assessments of overall environmental health; (2) The indicators used to determine adequate instream flows, and; (3) The assumptions underlying efforts to model instream flows given data constraints. It argues that judgments in each of these areas have an inherently ethical component because instream flows have direct effects on the water(s) available to meet obligations to humans and non-humans. The conclusion expands from the case study to generic issues regarding instream flows, the growing water ethics literature and prospects for linking science to policy.Keywords: ethics, instream flows, policy, science, watermanagement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15423205 Statistical Optimization of Process Conditions for Disinfection of Water Using Defatted Moringa oleifera Seed Extract
Authors: Suleyman A. Muyibi, Munirat, A. Idris, Saedi Jami, Parveen Jamal, Mohd Ismail Abdul Karim
Abstract:
In this study, statistical optimization design was used to study the optimum disinfection parameters using defatted crude Moringa oleifera seed extracts against Escherichia coli (E. coli) bacterial cells. The classical one-factor-at-a-time (OFAT) and response surface methodology (RSM) was used. The possible optimum range of dosage, contact time and mixing rate from the OFAT study were 25mg/l to 200mg/l, 30minutes to 240 minutes and 100rpm to 160rpm respectively. Analysis of variance (ANOVA) of the statistical optimization using faced centered central composite design showed that dosage, contact time and mixing rate were highly significant. The optimum disinfection range was 125mg/l, at contact time of 30 minutes with mixing rate of 120 rpm.
Keywords: E.coli, disinfection, Moringa oleifera, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25893204 Rating Charts of R-22 Alternatives Flow through Adiabatic Capillary Tubes
Authors: E. Elgendy, J. Schmidt
Abstract:
Drop-in of R-22 alternatives in refrigeration and air conditioning systems requires a redesign of system components to improve system performance and reliability with the alternative refrigerants. The present paper aims at design adiabatic capillary tubes for R-22 alternatives such as R-417A, R-422D and R-438A. A theoretical model has been developed and validated with the available experimental data from literature for R-22 over a wide range of both operating and geometrical parameters. Predicted lengths of adiabatic capillary tube are compared with the lengths of the capillary tube needed under similar experimental conditions and majority of predictions are found to be within 4.4% of the experimental data. Hence, the model has been applied for R-417A, R- 422D and R-438A and capillary tube selection charts and correlations have been computed. Finally a comparison between the selected refrigerants and R-22 has been introduced and the results showed that R-438A is the closest one to R-22.Keywords: Adiabatic flow, Capillary tube, R-22 alternatives, Rating charts, Modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32943203 Conceptual Design of the TransAtlantic as a Research Platform for the Development of “Green” Aircraft Technologies
Authors: Victor Maldonado
Abstract:
Recent concerns of the growing impact of aviation on climate change has prompted the emergence of a field referred to as Sustainable or “Green” Aviation dedicated to mitigating the harmful impact of aviation related CO2 emissions and noise pollution on the environment. In the current paper, a unique “green” business jet aircraft called the TransAtlantic was designed (using analytical formulation common in conceptual design) in order to show the feasibility for transatlantic passenger air travel with an aircraft weighing less than 10,000 pounds takeoff weight. Such an advance in fuel efficiency will require development and integration of advanced and emerging aerospace technologies. The TransAtlantic design is intended to serve as a research platform for the development of technologies such as active flow control. Recent advances in the field of active flow control and how this technology can be integrated on a sub-scale flight demonstrator are discussed in this paper. Flow control is a technique to modify the behavior of coherent structures in wall-bounded flows (over aerodynamic surfaces such as wings and turbine nozzles) resulting in improved aerodynamic cruise and flight control efficiency. One of the key challenges to application in manned aircraft is development of a robust high-momentum actuator that can penetrate the boundary layer flowing over aerodynamic surfaces. These deficiencies may be overcome in the current development and testing of a novel electromagnetic synthetic jet actuator which replaces piezoelectric materials as the driving diaphragm. One of the overarching goals of the TranAtlantic research platform include fostering national and international collaboration to demonstrate (in numerical and experimental models) reduced CO2/ noise pollution via development and integration of technologies and methodologies in design optimization, fluid dynamics, structures/ composites, propulsion, and controls.
Keywords: Aircraft Design, Sustainable “Green” Aviation, Active Flow Control, Aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25333202 A Conservative Multi-block Algorithm for Two-dimensional Numerical Model
Authors: Yaoxin Zhang, Yafei Jia, Sam S.Y. Wang
Abstract:
A multi-block algorithm and its implementation in two-dimensional finite element numerical model CCHE2D are presented. In addition to a conventional Lagrangian Interpolation Method (LIM), a novel interpolation method, called Consistent Interpolation Method (CIM), is proposed for more accurate information transfer across the interfaces. The consistent interpolation solves the governing equations over the auxiliary elements constructed around the interpolation nodes using the same numerical scheme used for the internal computational nodes. With the CIM, the momentum conservation can be maintained as well as the mass conservation. An imbalance correction scheme is used to enforce the conservation laws (mass and momentum) across the interfaces. Comparisons of the LIM and the CIM are made using several flow simulation examples. It is shown that the proposed CIM is physically more accurate and produces satisfactory results efficiently.
Keywords: Multi-block algorithm, conservation, interpolation, numerical model, flow simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17933201 An Efficient Fundamental Matrix Estimation for Moving Object Detection
Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung
Abstract:
In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.
Keywords: Corner detection, optical flow, epipolar geometry, RANSAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11173200 Academic Loss in Japanese Society: Suicide and Harassment
Authors: Miho Tsukamoto
Abstract:
Among many occupations in the country, the highest suicide rate is caused by graduate students. One of the reasons of high rate of suicide, is caused academic harassment. This paper is significant as researchers have investigated and many cases caused “jisatsu” have noticed in the country. Accordingly, this paper uses statistic of governmental organization, and focuses on graduate students’ mental stress, and graduate students’ suicides and leaves of absence.Keywords: Academic Harassment, Academic Loss, Escape, Jisatsu.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9293199 An Improved Quality Adaptive Rate Filtering Technique Based on the Level Crossing Sampling
Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin
Abstract:
Mostly the systems are dealing with time varying signals. The Power efficiency can be achieved by adapting the system activity according to the input signal variations. In this context an adaptive rate filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by following the input signal local variations. Thus, it correlates the processing activity with the signal variations. Interpolation is required in the proposed technique. A drastic reduction in the interpolation error is achieved by employing the symmetry during the interpolation process. Processing error of the proposed technique is calculated. The computational complexity of the proposed filtering technique is deduced and compared to the classical one. Results promise a significant gain of the computational efficiency and hence of the power consumption.Keywords: Level Crossing Sampling, Activity Selection, Rate Filtering, Computational Complexity, Interpolation Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15583198 Adaptation of State/Transition-Based Methods for Embedded System Testing
Authors: Abdelaziz Guerrouat, Harald Richter
Abstract:
In this paper test generation methods and appropriate fault models for testing and analysis of embedded systems described as (extended) finite state machines ((E)FSMs) are presented. Compared to simple FSMs, EFSMs specify not only the control flow but also the data flow. Thus, we define a two-level fault model to cover both aspects. The goal of this paper is to reuse well-known FSM-based test generation methods for automation of embedded system testing. These methods have been widely used in testing and validation of protocols and communicating systems. In particular, (E)FSMs-based specification and testing is more advantageous because (E)FSMs support the formal semantic of already standardised formal description techniques (FDTs) despite of their popularity in the design of hardware and software systems.
Keywords: Formal methods, testing and validation, finite state machines, formal description techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20933197 Data Rate Based Grouping Scheme for Cooperative Communications in Wireless LANs
Authors: Sunmyeng Kim
Abstract:
IEEE 802.11a/b/g standards provide multiple transmission rates, which can be changed dynamically according to the channel condition. Cooperative communications were introduced to improve the overall performance of wireless LANs with the help of relay nodes with higher transmission rates. The cooperative communications are based on the fact that the transmission is much faster when sending data packets to a destination node through a relay node with higher transmission rate, rather than sending data directly to the destination node at low transmission rate. To apply the cooperative communications in wireless LAN, several MAC protocols have been proposed. Some of them can result in collisions among relay nodes in a dense network. In order to solve this problem, we propose a new protocol. Relay nodes are grouped based on their transmission rates. And then, relay nodes only in the highest group try to get channel access. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and collision probability.
Keywords: Cooperative communications, MAC protocol, relay node, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19063196 Investigation of Inter Feeder Power Flow Regulator: Load Sharing Mode
Authors: Ahmed Hossam-Eldin, Ahmed Elserougi, Ahmed Massoud, Shehab Ahmed
Abstract:
The Inter feeder Power Flow Regulator (IFPFR) proposed in this paper consists of several voltage source inverters with common dc bus; each inverter is connected in series with one of different independent distribution feeders in the power system. This paper is concerned with how to transfer power between the feeders for load sharing purpose. The power controller of each inverter injects the power (for sending feeder) or absorbs the power (for receiving feeder) via injecting suitable voltage; this voltage injection is simulated by voltage drop across series virtual impedance, the impedance value is selected to achieve the concept of power exchange between the feeders without perturbing the load voltage magnitude of each feeder. In this paper a new control scheme for load sharing using IFPFR is proposed.Keywords: IFPFR, Load sharing, Power transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16233195 Application of Micro-continuum Approach in the Estimation of Snow Drift Density, Velocity and Mass Transport in Hilly Bound Cold Regions
Authors: Mahmoud Zarrini, R. N. Pralhad
Abstract:
We estimate snow velocity and snow drift density on hilly terrain under the assumption that the drifting snow mass can be represented using a micro-continuum approach (i.e. using a nonclassical mechanics approach assuming a class of fluids for which basic equations of mass, momentum and energy have been derived). In our model, the theory of coupled stress fluids proposed by Stokes [1] has been employed for the computation of flow parameters. Analyses of bulk drift velocity, drift density, drift transport and mass transport of snow particles have been carried out and computations made, considering various parametric effects. Results are compared with those of classical mechanics (logarithmic wind profile). The results indicate that particle size affects the flow characteristics significantly.
Keywords: Snow velocity, snow drift density, mass transport of snow particles, snow avalanche.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17563194 Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel
Authors: K. Krishnaprasad, Raghu V. Prakash
Abstract:
Constant amplitude fatigue crack growth (FCG) tests were performed on dissimilar metal welded plates of Type 316L Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The plates were welded by TIG welding using SS E309 as electrode. FCG tests were carried on the Side Edge Notch Tension (SENT) specimens of 5 mm thickness, with crack initiator (notch) at base metal region (BM), weld metal region (WM) and heat affected zones (HAZ). The tests were performed at a test frequency of 10 Hz and at load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with stress ratio for weld metals and base metals, where as in case of HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of stainless steel was found to be lowest at low and high ΔK. At intermediate ΔK, WM showed the lowest FCG rate. CS showed higher crack growth rate at all ΔK. However, the scatter band of data was found to be narrow. Fracture toughness (Kc) was found to vary in different locations of weldments. Kc was found lowest for the weldment and highest for HAZ of stainless steel. A novel method of characterizing the FCG behavior using an Infrared thermography (IRT) camera was attempted. By monitoring the temperature rise at the fast moving crack tip region, the amount of plastic deformation was estimated.Keywords: Dissimilar metal weld, Fatigue Crack Growth, fracture toughness, Infrared thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28933193 Produced Gas Conversion of Microwave Carbon Receptor Reforming
Authors: Young Nam Chun, Mun Sup Lim
Abstract:
Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used.
Keywords: Microwave, gas reforming, greenhouse gas, microwave receptor, catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10503192 Poincaré Plot for Heart Rate Variability
Authors: Mazhar B. Tayel, Eslam I. AlSaba
Abstract:
Heart is the most important part in the body of living organisms. It affects and is affected by any factor in the body. Therefore, it is a good detector for all conditions in the body. Heart signal is a non-stationary signal; thus, it is utmost important to study the variability of heart signal. The Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and has become important dependent measure in psychophysiology and behavioral medicine. The standards of measurements, physiological interpretation and clinical use for HRV that are most often used were described in many researcher papers, however, remain complex issues are fraught with pitfalls. This paper presents one of the nonlinear techniques to analyze HRV. It discusses many points like, what Poincaré plot is and how Poincaré plot works; also, Poincaré plot's merits especially in HRV. Besides, it discusses the limitation of Poincaré cause of standard deviation SD1, SD2 and how to overcome this limitation by using complex correlation measure (CCM). The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared toSD1 and SD2.
Keywords: Heart rate variability, chaotic system, Poincaré, variance, standard deviation, complex correlation measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74523191 Effects of Li2O Thickness and Moisture Content on LiH Hydrolysis Kinetics in Slightly Humidified Argon
Authors: S. Xiao, M. B. Shuai, M. F. Chu
Abstract:
The hydrolysis kinetics of polycrystalline lithium hydride (LiH) in argon at various low humidities was measured by gravimetry and Raman spectroscopy with ambient water concentration ranging from 200 to 1200 ppm. The results showed that LiH hydrolysis curve revealed a paralinear shape, which was attributed to two different reaction stages that forming different products as explained by the 'Layer Diffusion Control' model. Based on the model, a novel two-stage rate equation for LiH hydrolysis reactions was developed and used to fit the experimental data for determination of Li2O steady thickness Hs and the ultimate hydrolysis rate vs. The fitted data presented a rise of Hs as ambient water concentration cw increased. However, in spite of the negative effect imposed by Hs increasing, the upward trend of vs remained, which implied that water concentration, rather than Li2O thickness, played a predominant role in LiH hydrolysis kinetics. In addition, the proportional relationship between vsHs and cw predicted by rate equation and confirmed by gravimetric data validated the model in such conditions.
Keywords: Hydrolysis kinetics, ‘Layer Diffusion Control’ model, Lithium hydride
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17013190 Influence of Transportation Mode to the Deterioration Rate: Case Study of Food Transport by Ship
Authors: Danijela Tuljak-Suban, Valter Suban
Abstract:
Food as perishable goods represents a specific and sensitive part in the supply chain theory, since changing physical or chemical characteristics considerably influence the approach to stock management. The most delicate phase of this process is transportation, where it becomes difficult to ensure the stable conditions which limit deterioration, since the value of the deterioration rate could be easily influenced by the mode of transportation. The fuzzy definition of variables allows one to take these variations into account. Furthermore, an appropriate choice of the defuzzification method permits one to adapt results to real conditions as far as possible. In this article those methods which take into account the relationship between the deterioration rate of perishable goods and transportation by ship will be applied with the aim of (a) minimizing the total cost function, defined as the sum of the ordering cost, holding cost, disposing cost and transportation costs, and (b) improving the supply chain sustainability by reducing environmental impact and waste disposal costs.
Keywords: Perishable goods, fuzzy reasoning, transport by ship, supply chain sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25863189 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives
Authors: Dong Xie, Jun Zhao, Yiming Weng
Abstract:
The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37- 55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.Keywords: Poly(alkenoic acid)s, molecular structures, dental cement, mechanical strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14883188 Bit Error Rate Analysis of Mobile Communication Network in Nakagami Fading Channel: Interference Considerations
Authors: Manoranjan Das, Benudhar Sahu, Urmila Bhanja
Abstract:
Co-channel interference is one of the major problems in wireless systems. The effects of co-channel interference in a Nakagami fading channel on the ABER (Average Bit Error Rate) with static nodes are well analyzed. In this paper, we derive the ABER with the presence of mobile nodes. ABER is also derived for mobile systems in the presence of co-channel interference.
Keywords: ABER, co-channel interference, Nakagami fading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12323187 Heart Rate Variability in Responders and Non- Responders to Live-Moderate, Train-Low Altitude Training
Authors: Michael J. Hamlin, Apiwan Manimmanakorn, Gavin R. Sandercock, Jenny J. Ross, Robert H. Creasy, John Hellemans
Abstract:
The aim of this study was to compare the effects of an altitude training camp on heart rate variability and performance in elite triathletes. Ten athletes completed 20 days of live-high, train-low training at 1650m. Athletes underwent pre and post 800-m swim time trials at sea-level, and two heart rate variability tests at 1650m on the first and last day of the training camp. Based on their time trial results, athletes were divided into responders and non-responders. Relative to the non-responders, the responders sympathetic-toparasympathetic ratio decreased substantially after 20 days of altitude training (-0.68 ± 1.08 and -1.2 ± 0.96, mean ± 90% confidence interval for supine and standing respectively). In addition, sympathetic activity while standing was also substantially lower post-altitude in the responders compared to the non-responders (-1869 ± 4764 ms2). Results indicate that responders demonstrated a change to more vagal predominance compared to non-responders.Keywords: parasympathetic predominance, poor performance, triathlon, 800-m swim
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17943186 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning
Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar
Abstract:
Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.
Keywords: ANOVA, MQL, regression analysis, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4863185 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning
Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar
Abstract:
Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.
Keywords: ANOVA, MQL, regression analysis, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3743184 Numerical Simulation of Conjugated Heat Transfer Characteristics of Laminar Air Flows in Parallel-Plate Dimpled Channels
Authors: Hossein Shokouhmand , Mohammad A. Esmaeili, Koohyar Vahidkhah
Abstract:
This paper presents a numerical study on surface heat transfer characteristics of laminar air flows in parallel-plate dimpled channels. The two-dimensional numerical model is provided by commercial code FLUENT and the results are obtained for channels with symmetrically opposing hemi-cylindrical cavities onto both walls for Reynolds number ranging from 1000 to 2500. The influence of variations in relative depth of dimples (the ratio of cavity depth to the cavity curvature diameter), the number of them and the thermophysical properties of channel walls on heat transfer enhancement is studied. The results are evident for existence of an optimum value for the relative depth of dimples in which the largest wall heat flux and average Nusselt number can be achieved. In addition, the results of conjugation simulation indicate that the overall influence of the ratio of wall thermal conductivity to the one of the fluid on heat transfer rate is not much significant and can be ignored.Keywords: cavity, conjugation, heat transfer, laminar air flow, Numerical, parallel-plate channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19563183 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer
Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja–Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin
Abstract:
New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1–3 bars and in range of flow rate of 50–150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50–70 l/m2h. The obtained turbidity decrease was in the range of 50-99 % and total amount of suspended solids was removed.Keywords: Ceramic membrane, microfiltration, sugar industry, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18683182 Investigation on the HRSG Installation at South Pars Gas Complex Phases 2&3
Authors: R. Moradifar, M. Masahebfard, M. Zahir
Abstract:
In this article the investigation about installation heat recovery steam generation (HRSG) on the exhaust of turbo generators of phases 2&3 at South Pars Gas Complex is presented. The temperature of exhaust gas is approximately 665 degree centigrade, Installation of heat recovery boiler was simulated in ThermoFlow 17.0.2 software, based on test operation data and the equipments site operation conditions in Pars exclusive economical energy area, the affect of installation HRSG package on the available gas turbine and its operation parameters, ambient temperature, the exhaust temperatures steam flow rate were investigated. Base on the results recommended HRSG package should have the capacity for 98 ton per hour high pressure steam generation this refinery, by use of exhaust of three gas turbines for each package in operation condition of each refinery at 30 degree centigrade. Besides saving energy this project will be an Environment-Friendly project. The Payback Period is estimated approximately 1.8 year, with considering Clean Development Mechanism.Keywords: HRSG, South pars Gas complex, ThermoFlow 17.0.2 software, energy, turbo generators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23473181 A Fast, Portable Computational Framework for Aerodynamic Simulations
Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo
Abstract:
We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12113180 Lateral Pressure in Squat Silos under Eccentric Discharge
Authors: Y. Z. Zhu, S. P. Meng, W. W. Sun
Abstract:
The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.Keywords: Squat silo, eccentric discharge, lateral pressure, asymmetric distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31603179 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model
Authors: Hidetoshi Konno, Akio Suzuki
Abstract:
The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.
Keywords: Transient population dynamics, Phase singularity, Birth-death process, Non-stationary Master equation, nonlinear Langevin equation, generalized Logistic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15933178 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms
Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic
Abstract:
Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.Keywords: Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824