Search results for: fuzzy techniques and models.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5507

Search results for: fuzzy techniques and models.

4127 Effect of Including Thermal Process on Spot Welded and Weld-Bonded Joints

Authors: Essam A. Al-Bahkali

Abstract:

A three-dimensional finite element modeling for austenitic stainless steel AISI 304 annealed condition sheets of 1.0 mm thickness are developed using ABAQUS® software. This includes spot welded and weld bonded joints models. Both models undergo thermal heat caused by spot welding process and then are subjected to axial load up to the failure point. The properties of elastic and plastic regions, modulus of elasticity, fracture limit, nugget and heat affected zones are determined. Complete loaddisplacement curve for each joining model is obtained and compared with the experiment data and with the finite element models without including the effect of thermal process. In general, the results obtained for both spot welded and weld-bonded joints affected by thermal process showed an excellent agreement with the experimental data.

Keywords: Heat Affected Zone, Spot Welded, Thermal Process, Weld-Bonded.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
4126 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276
4125 Compression Study on Velvet and Termeh in Iranian Brocade

Authors: R. Moosazadeh

Abstract:

From ancient times, in some cultures, the way of choosing the colour and pattern of the fabric, and its decoration, represents a message about their beliefs, traditions and ethnical origins. Due to the diversity of clothing in the Middle East, two special types of Iranian fabrics have been investigated. The process of knitting with a weaving-loom is always accompanied by passing the fibres of the warp in different ways. This study presented the historical investigation of brocades and explanation about traditional Iranian brocades in terms of fabric, shape, and patterns. Moreover, the compression results between characteristics of Termeh and velvet have been reported. The aim of the study was to focus on the history of fabric texture in Iran and general information about brocades and Termeh fabrics in expressions of their historical traditions. In conclusion, it is attempted to introduce knitting techniques and designed models which have been presented for this traditional and expensive Iranian fabric.

Keywords: Texture, brocade, Termeh, Velvet Braid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
4124 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: Data mining, knowledge discovery in databases, prediction models, student success.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
4123 Coordinated Multi-Point Scheme Based On Channel State Information in MIMO-OFDM System

Authors: Su-Hyun Jung, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

Recently, increasing the quality of experience (QoE) is an important issue. Since performance degradation at cell edge extremely reduces the QoE, several techniques are defined at LTE/LTE-A standard to remove inter-cell interference (ICI). However, the conventional techniques have disadvantage because there is a trade-off between resource allocation and reliable communication. The proposed scheme reduces the ICI more efficiently by using channel state information (CSI) smartly. It is shown that the proposed scheme can reduce the ICI with fewer resources.

Keywords: Adaptive beam forming, CoMP, LTE-A, ICI reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517
4122 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
4121 Drilling of Glass Sheets by Abrasive Jet Machining

Authors: A. El-Domiaty, H. M. Abd El-Hafez, M. A. Shaker

Abstract:

Drilling of glass sheets with different thicknesses have been carried out by Abrasive Jet Machining process (AJM) in order to determine its machinability under different controlling parameters of the AJM process. The present study has been introduced a mathematical model and the obtained results have been compared with that obtained from other models published earlier [1-6]. The experimental results of the present work are used to discuss the validity of the proposed model as well as the other models.

Keywords: Abrasive Jet Machining, Erosion rate, Glass, Mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3946
4120 Multicast Optimization Techniques using Best Effort Genetic Algorithms

Authors: Dinesh Kumar, Y. S. Brar, V. K. Banga

Abstract:

Multicast Network Technology has pervaded our lives-a few examples of the Networking Techniques and also for the improvement of various routing devices we use. As we know the Multicast Data is a technology offers many applications to the user such as high speed voice, high speed data services, which is presently dominated by the Normal networking and the cable system and digital subscriber line (DSL) technologies. Advantages of Multi cast Broadcast such as over other routing techniques. Usually QoS (Quality of Service) Guarantees are required in most of Multicast applications. The bandwidth-delay constrained optimization and we use a multi objective model and routing approach based on genetic algorithm that optimizes multiple QoS parameters simultaneously. The proposed approach is non-dominated routes and the performance with high efficiency of GA. Its betterment and high optimization has been verified. We have also introduced and correlate the result of multicast GA with the Broadband wireless to minimize the delay in the path.

Keywords: GA (genetic Algorithms), Quality of Service, MOGA, Steiner Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
4119 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models

Authors: Rohitash Chandra, Christian W. Omlin

Abstract:

We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.

Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
4118 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform

Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee

Abstract:

This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.

Keywords: Boid algorithm, crowd simulation, mobile platform, Newtonian laws, virtual heritage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
4117 Seismic Analysis of a S-Curved Viaduct using Stick and Finite Element Models

Authors: Sourabh Agrawal, Ashok K. Jain

Abstract:

Stick models are widely used in studying the behaviour of straight as well as skew bridges and viaducts subjected to earthquakes while carrying out preliminary studies. The application of such models to highly curved bridges continues to pose challenging problems. A viaduct proposed in the foothills of the Himalayas in Northern India is chosen for the study. It is having 8 simply supported spans @ 30 m c/c. It is doubly curved in horizontal plane with 20 m radius. It is inclined in vertical plane as well. The superstructure consists of a box section. Three models have been used: a conventional stick model, an improved stick model and a 3D finite element model. The improved stick model is employed by making use of body constraints in order to study its capabilities. The first 8 frequencies are about 9.71% away in the latter two models. Later the difference increases to 80% in 50th mode. The viaduct was subjected to all three components of the El Centro earthquake of May 1940. The numerical integration was carried out using the Hilber- Hughes-Taylor method as implemented in SAP2000. Axial forces and moments in the bridge piers as well as lateral displacements at the bearing levels are compared for the three models. The maximum difference in the axial forces and bending moments and displacements vary by 25% between the improved and finite element model. Whereas, the maximum difference in the axial forces, moments, and displacements in various sections vary by 35% between the improved stick model and equivalent straight stick model. The difference for torsional moment was as high as 75%. It is concluded that the stick model with body constraints to model the bearings and expansion joints is not desirable in very sharp S curved viaducts even for preliminary analysis. This model can be used only to determine first 10 frequency and mode shapes but not for member forces. A 3D finite element analysis must be carried out for meaningful results.

Keywords: Bearing, body constraint, box girder, curved viaduct, expansion joint, finite element, link element, seismic, stick model, time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
4116 Analysis of an Electrical Transformer: A Bond Graph Approach

Authors: Gilberto Gonzalez-A

Abstract:

Bond graph models of an electrical transformer including the nonlinear saturation are presented. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two and three windings using the properties of a bond graph. The modelling and analysis using this methodology to three phase power transformers or transformers with internal incipient faults can be extended.

Keywords: Bond graph, electrical transformer, nonlinear saturation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
4115 A Developmental Survey of Local Stereo Matching Algorithms

Authors: André Smith, Amr Abdel-Dayem

Abstract:

This paper presents an overview of the history and development of stereo matching algorithms. Details from its inception, up to relatively recent techniques are described, noting challenges that have been surmounted across these past decades. Different components of these are explored, though focus is directed towards the local matching techniques. While global approaches have existed for some time, and demonstrated greater accuracy than their counterparts, they are generally quite slow. Many strides have been made more recently, allowing local methods to catch up in terms of accuracy, without sacrificing the overall performance.

Keywords: Developmental survey, local stereo matching, stereo correspondence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
4114 MCDM Spectrum Handover Models for Cognitive Wireless Networks

Authors: Cesar Hernández, Diego Giral, Fernando Santa

Abstract:

Spectrum handover is a significant topic in the cognitive radio networks to assure an efficient data transmission in the cognitive radio user’s communications. This paper proposes a comparison between three spectrum handover models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handover, accumulative average of handover performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handover models was validated with captured data of spectrum occupancy in experiments performed at the GSM frequency band (824 MHz - 849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparison show that VIKOR Algorithm provides a 15.8% performance improvement compared to SAW Algorithm and, it is 12.1% better than the MEW Algorithm.

Keywords: Cognitive radio, decision making, MEW, SAW, spectrum handover, VIKOR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
4113 Definition of Foot Size Model using Kohonen Network

Authors: Khawla Ben Abderrahim

Abstract:

In order to define a new model of Tunisian foot sizes and for building the most comfortable shoes, Tunisian industrialists must be able to offer for their customers products able to put on and adjust the majority of the target population concerned. Moreover, the use of models of shoes, mainly from others country, causes a mismatch between the foot and comfort of the Tunisian shoes. But every foot is unique; these models become uncomfortable for the Tunisian foot. We have a set of measures produced from a 3D scan of the feet of a diverse population (women, men ...) and we try to analyze this data to define a model of foot specific to the Tunisian footwear design. In this paper we propose tow new approaches to modeling a new foot sizes model. We used, indeed, the neural networks, and specially the Kohonen network. Next, we combine neural networks with the concept of half-foot size to improve the models already found. Finally, it was necessary to compare the results obtained by applying each approach and we decide what-s the best approach that give us the most model of foot improving more comfortable shoes.

Keywords: Morphology of the foot, foot size, half foot size, neural network, Kohonen network, model of foot size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
4112 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain subgroups of time series data with normal distribution from the inflow into wastewater treatment plant data, composed of several groups differing by mean value. Two simple algorithms, K-mean and EM, were chosen as a clustering method. The Rand index was used to measure the similarity. After simple meta-clustering, a regression model was performed for each subgroups. The final model was a sum of the subgroups models. The quality of the obtained model was compared with the regression model made using the same explanatory variables, but with no clustering of data. Results were compared using determination coefficient (R2), measure of prediction accuracy- mean absolute percentage error (MAPE) and comparison on a linear chart. Preliminary results allow us to foresee the potential of the presented technique.

Keywords: Clustering, Data analysis, Data mining, Predictive models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
4111 On Four Models of a Three Server Queue with Optional Server Vacations

Authors: Kailash C. Madan

Abstract:

We study four models of a three server queueing system with Bernoulli schedule optional server vacations. Customers arriving at the system one by one in a Poisson process are provided identical exponential service by three parallel servers according to a first-come, first served queue discipline. In model A, all three servers may be allowed a vacation at one time, in Model B at the most two of the three servers may be allowed a vacation at one time, in model C at the most one server is allowed a vacation, and in model D no server is allowed a vacation. We study steady the state behavior of the four models and obtain steady state probability generating functions for the queue size at a random point of time for all states of the system. In model D, a known result for a three server queueing system without server vacations is derived.

Keywords: A three server queue, Bernoulli schedule server vacations, queue size distribution at a random epoch, steady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
4110 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques

Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici

Abstract:

Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.

Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
4109 Simulating Action Potential as a Linear Combination of Gating Dynamics

Authors: S. H. Sabzpoushan

Abstract:

In this research we show that the dynamics of an action potential in a cell can be modeled with a linear combination of the dynamics of the gating state variables. It is shown that the modeling error is negligible. Our findings can be used for simplifying cell models and reduction of computational burden i.e. it is useful for simulating action potential propagation in large scale computations like tissue modeling. We have verified our finding with the use of several cell models.

Keywords: Linear model, Action potential, gating dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
4108 Planning a Supply Chain with Risk and Environmental Objectives

Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali

Abstract:

The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.

Keywords: Supply chain, optimization, LP models, risk, environmental indicators, multi-objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
4107 Real-Time Visual Simulation and Interactive Animation of Shadow Play Puppets Using OpenGL

Authors: Tan Kian Lam, Abdullah Zawawi bin Haji Talib, Mohd. Azam Osman

Abstract:

This paper describes a method of modeling to model shadow play puppet using sophisticated computer graphics techniques available in OpenGL in order to allow interactive play in real-time environment as well as producing realistic animation. This paper proposes a novel real-time method is proposed for modeling of puppet and its shadow image that allows interactive play of virtual shadow play using texture mapping and blending techniques. Special effects such as lighting and blurring effects for virtual shadow play environment are also developed. Moreover, the use of geometric transformations and hierarchical modeling facilitates interaction among the different parts of the puppet during animation. Based on the experiments and the survey that were carried out, the respondents involved are very satisfied with the outcomes of these techniques.

Keywords: Animation, blending, hierarchical modeling, interactive play, real-time, shadow play, visual simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
4106 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System

Authors: Benjamin C. Agwah, Paulinus C. Eze

Abstract:

Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.

Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
4105 Conceptual Multidimensional Model

Authors: Manpreet Singh, Parvinder Singh, Suman

Abstract:

The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.

Keywords: Multidimensional, data precision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
4104 Ranking Alternatives in Multi-Criteria Decision Analysis using Common Weights Based on Ideal and Anti-ideal Frontiers

Authors: Saber Saati Mohtadi, Ali Payan, Azizallah Kord

Abstract:

One of the most important issues in multi-criteria decision analysis (MCDA) is to determine the weights of criteria so that all alternatives can be compared based on the collective performance of criteria. In this paper, one of popular methods in data envelopment analysis (DEA) known as common weights (CWs) is used to determine the weights in MCDA. Two frontiers named ideal and anti-ideal frontiers, instead of ideal and anti-ideal alternatives, are defined based on two new proposed CWs models. Ideal and antiideal frontiers are more flexible than that of alternatives. According to the optimal solutions of these two models, the distances of an alternative from the ideal and anti-ideal frontiers are derived. Then, a relative distance is introduced to measure the value of each alternative. The suggested models are linear and despite weight restrictions are feasible. An example is presented for explaining the method and for comparing to the existing literature.

Keywords: Anti-ideal frontier, Common weights (CWs), Ideal frontier, Multi-criteria decision analysis (MCDA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
4103 Adaptive Gaussian Mixture Model for Skin Color Segmentation

Authors: Reza Hassanpour, Asadollah Shahbahrami, Stephan Wong

Abstract:

Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.

Keywords: Face detection, Segmentation, Tracking, Gaussian Mixture Model, Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
4102 Line Balancing in the Hard Disk Drive Process Using Simulation Techniques

Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat

Abstract:

Simulation model is an easy way to build up models to represent real life scenarios, to identify bottlenecks and to enhance system performance. Using a valid simulation model may give several advantages in creating better manufacturing design in order to improve the system performances. This paper presents result of implementing a simulation model to design hard disk drive manufacturing process by applying line balancing to improve both productivity and quality of hard disk drive process. The line balance efficiency showed 86% decrease in work in process, output was increased by an average of 80%, average time in the system was decreased 86% and waiting time was decreased 90%.

Keywords: line balancing, arena, hard disk drive process, simulation, work in process (WIP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
4101 Comparison of Fundamental Frequency Model and PWM Based Model of UPFC

Authors: S.A. Al-Qallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

Among all FACTS devices, the unified power flow controller (UPFC) is considered to be the most versatile device. This is due to its capability to control all the transmission system parameters (impedance, voltage magnitude, and phase angle). With the growing interest in UPFC, the attention to develop a mathematical model has increased. Several models were introduced for UPFC in literature for different type of studies in power systems. In this paper a novel comparison study between two dynamic models of UPFC with their proposed control strategies.

Keywords: FACTS, UPFC, Dynamic Modeling, PWM, Fundamental Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
4100 Better Perception of Low Resolution Images Using Wavelet Interpolation Techniques

Authors: Tarun Gulati, Kapil Gupta, Dushyant Gupta

Abstract:

High resolution images are always desired as they contain the more information and they can better represent the original data. So, to convert the low resolution image into high resolution interpolation is done. The quality of such high resolution image depends on the interpolation function and is assessed in terms of sharpness of image. This paper focuses on Wavelet based Interpolation Techniques in which an input image is divided into subbands. Each subband is processed separately and finally combined the processed subbandsto get the super resolution image. 

Keywords: SWT, DWTSR, DWTSWT, DWCWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
4099 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh

Abstract:

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Keywords: Block layout problem, building-block layout design, CAD, optimization, search techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
4098 Peakwise Smoothing of Data Models using Wavelets

Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan

Abstract:

Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.

Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753